

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D3.1 – INITIAL SYSTEM ARCHITECTURE & DESIGN
SPECIFICATION

Deliverable ID D3.1

Deliverable Title Initial System Architecture & Design Specification

Work Package WP3 – Architecture design and Component Integration

Dissemination Level PUBLIC

Version 1.0

Date 2017-08-18

Status Final

Lead Editor Junhong Liang (FRAUNHOFER)

Main Contributors Junhong Liang (FRAUNHOFER), Dario Bonino (ISMB), Etienne
Brosse (SOFTEAM), Melanie Schranz (LAKE), Wilfried
Elmenreich (UNI-KLU), Regina Bíró (SLAB), Edin Arnautovic
(TTTECH), Rafa Lopez (ROBOTNIK), Omar Morando (DGSKY)

Published by the CPSwarm Consortium

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 2 of 73

Document History

Version Date Author(s) Description

0.01 2017-05-2 Junhong Liang
(FIT) First Draft with TOC

0.02 2017-05-31 Dario Bonino
(ISMB)

Minor revisions, integration of missing Internal Review History,
specification of section 2 TOC

0.03 2017-06-18 Junhong Liang
(FIT) Rework of TOC for tool analysis and architecture design.

0.04 2017-06-19

Junhong Liang
(FIT)

Dario Bonino
(ISMB)

Added partial contribution from FIT and ISMB

0.05 2017-06-21 Junhong Liang
(FIT) Added executive summary, introduction and conclusion

0.10 2017-06-28 Junhong Liang
(FIT)

Added contributions from LAKE, SOFTEAM, SLAB, TTTECH, ROB,
ISMB and FIT

0.11 2017-06-29 Junhong Liang
(FIT) Fixed formats, grammars and references

0.20 2017-06-30 Junhong Liang
(FIT) Released for review

0.30 2017-07-19 Junhong Liang
(FIT)

 Added modifications from partner addressing reviewers’
comments, released for second review

0.31 2017-07-20 Junhong Liang
(FIT) Added contribution from UNI-KLU

0.32 2017-08-17 Claudio
Pastrone (ISMB) A few minor modifications inserted after plenary discussion

1.0 2017-08-18 Junhong Liang
(FIT) Final version to be submitted to EC

Internal Review History

Review Date Reviewer Summary of Comments

2017-07-05 Alessandra Bagnato
(SOFT)

• Spelling and various comments throughout the
document.

2017-07-10 Dario Bonino, Claudio
Pastrone (ISMB)

• Modifications inserted throughout the document
• Comments have been provided requiring updated

contributions.

2017-07-20 Alessandra Bagnato
(SOFT) • 0.31 document version approved with minor comments.

2017-08-17 Claudio Pastrone (ISMB) • 0.31 document version approved with minor comments.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 3 of 73

Table of Contents

Document History .. 2
Internal Review History .. 2
Table of Contents ... 3
1 Executive Summary .. 4
2 Introduction .. 5

2.1 Related documents.. 5
3 Analysis of Relevant Engineering Methods, Tools, Technologies and Standards .. 6

3.1 Methodology ... 6
3.2 Survey of Tools and Frameworks currently adopted for CPS design / development 6
3.3 Survey of existing modelling standards / patterns ... 13
3.4 Preliminary Analysis of design methodologies applicable to the CPS domain ... 16

4 Architecture Design ... 20
4.1 Methodology ... 20
4.2 Stakeholders and Requirements .. 23
4.3 Context View .. 28
4.4 Functional View ... 29
4.5 Information View .. 47
4.6 Deployment View ... 57

5 Security Perspective .. 59
5.1 Security threat analysis .. 59
5.2 Countermeasures ... 60
5.3 Security aspects in CPSwarm architecture design... 63

6 Scalability Perspective .. 64
6.1 CPSwarm Workbench ... 64
6.2 CPSwarm Deployment Toolchain .. 65
6.3 Summary and discussion .. 66

7 Future Steps .. 67
7.1 Future activities and timeline .. 67
7.2 Alternative architecture for future exploration .. 67

8 Conclusions ... 68
Acronyms ... 69
List of figures .. 69
List of tables .. 70

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 4 of 73

1 Executive Summary

This document is a deliverable of the CPSwarm project, funded by the European Commission’s Directorate-
General for Research and Innovation (DG RTD), under the Horizon 2020 Research and innovation Program
(H2020). It is a public report organized along 2 main parts respectively introducing an analysis of relevant
engineering methods, tools and standards currently available for swarm design and the initial design of the
CPSwarm system architecture.

The part Analysis of relevant engineering methods, tools and standards introduces the technical background of
the CPSwarm project. It provides an up-to-date snapshot of available technologies that can be readily
exploited in the project. All partners participated in this analysis by surveying different relevant domains of
swarm development, from CPS modeling to robotics programming. The technologies described in this part
serve as technical starting point for the architecture design presented in this report.

The part Architecture Design presents the initial architecture design of the CPSwarm system. The architecture
design process is documented by complying with the ISO/IEC/IEEE 42010 “System and software engineering
– Architecture description” [1] standard. Relevant viewpoints of the system are presented as documentation
for different architectural aspects of the CPSwarm system.

Besides the main functional and component-based descriptions, cross-cutting concerns such as security,
scalability are also addressed. It is worth mentioning, that this is the outcome of the initial iteration of
architecture design, a process running throughout the whole project lifetime. Since the overall CPSwarm
methodology is built upon an iterative approach, the architecture design is subject to possible modifications
in future iterations. Those changes will be documented in a later Deliverable “Updated System Architecture
and Design Specification”, due by the end of June, 2018.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 5 of 73

2 Introduction

This deliverable documents the results of activities taken in Task 3.1 Analysis of relevant engineering methods
and tools, technologies and standards and Task 3.2 CPSwarm System Architecture. The general purpose of this
document is to provide a common technical background and an initial architecture design as starting point
for future developments.
In the first part of the deliverable, available technologies to develop swarms of CPS (Cyber Physical Systems)
are introduced. Since the goal of CPSwarm is to establish new methodologies and tools to tackle challenges
in swarm development, the interest is mainly in the currently used tools and frameworks for swarm
development, as well as possible tools and methodologies for improvement. Different surveys were
conducted and the results are documented in section 3. They include the following surveys:

• Survey of Tools and Frameworks currently adopted for CPS design / development;
• Survey of existing modelling standards / patterns;
• Preliminary Analysis of design methodologies applicable to the CPS domain.

In the second part of this document, an initial version of architecture design is described. To build a solid
foundation for future developments, the focus is on defining functionalities of different components and
interfaces between them. The design process follows the standard ISO/IEC/IEEE 42010 “System and software
engineering – Architecture description” [1]. The following viewpoints are chosen to represent the architecture
design, which is documented in section 4:

• Context view
• Functional view
• Information view
• Deployment view

Besides the aforementioned actions, to ensure high-quality development, important cross-cutting concerns
such as security and scalability have already been addressed during this initial design effort in section 5 and
section 6.

At the end of the document, a plan for future steps and possible exploration directions are presented in
section 7. It is worth noting that the CPSwarm architecture is expected to be revised, extended and refined in
the future, accounting for evidences and lessons learned while accomplishing project activities.

2.1 Related documents

ID Title Reference Version Date

D2.1 Initial Vision Scenarios and Use Case Definition D2.1 M4

D2.3 Initial Requirements Report D2.3 M6

D3.2 Updated System Architecture Analysis & Design
Specification D3.2 M18

D3.7 Test and Integration Plan D3.7 M9

D4.1 Initial CPS modeling library D4.1 M9

D4.4 Initial Swarm Modelling Library D4.4 M10

D5.1 CPSwarm Modelling Language Specification D5.1 M12

D5.2 Initial CPSwarm Modelling Tool D5.2 M9

D6.1 Initial Simulation Environment D6.1 M9

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 6 of 73

3 Analysis of Relevant Engineering Methods, Tools, Technologies and Standards

Designing and deploying swarms of CPS is still an open research domain with many challenges to be solved
and issues to be addressed. Several interesting approaches are emerging from literature and some de-facto
modelling approach is slowly appearing from the intense scientific activity being carried on the topic.
Nevertheless, defining the CPSwarm architecture requires to gather an up-to-date view on currently adopted
design methodologies, engineering tools and emerging standards to ensure that even the most recent
findings are considered in the overall CPSwarm workbench design.

On such premises, an intense technology survey activity was carried in the first months of the project and
was exploited as foundation for defining the actual CPSwarm workbench architecture. In order to provide a
solid ground for design decisions and architectural choices described in subsequent chapters, the most
relevant findings of such survey activities have been summarized and organized in this chapter. Rather than
aiming at providing an extensive overview of the current state of the art in CPS design, this chapter describes
a snapshot of current efforts, which are particularly related to CPSwarm, also considering possible
technologies and solutions upon which the project outcomes can be built.

The remainder of this section is organized as follows. Section 3.1 describes the methodology adopted for
surveying the current solutions and approaches, including CPS design techniques and tools, while Section 3.2
provides details on tools and frameworks currently adopted for day-to-day development of CPS, with a focus
on rovers and drones. Section 3.3 provides an up-to-date summary of models and model-based technologies
adopted in the CPS design domain. Finally, Section 3.4 surveys methodologies adopted for tackling design in
such a specific domain with a particular focus on swarm and self-organizing behaviors and on human-
robotics interaction.

3.1 Methodology

Many methodologies may be followed for surveying the current state-of-the-art in a given knowledge
domain. Systematic literature review, for example, allows providing objective, systematic, transparent and
replicable results. It involves a systematic search process to locate studies, which address a research question,
as well as a systematic presentation of the characteristics and findings of the results of such a search.

In the first phase of CPSwarm, a less structured approach is adopted to gather the current state-of-the-art in
CPS design. The main motivation for such a lower replicability approach was two-folded. On one hand, a first
set of results is desirable quite early in the project, to drive the initial architecture design. On the other hand,
since the CPS design domain is very actively researched, there was a not negligible risk that adopting a
longer surveying methodology would have implied exclusion of relevant works that might still be under
review or unpublished.

For these reasons, involved partners are engaged to report their specific knowledge and their own findings
on engineering tools, methods and standards relevant for the project. Such a process has been implemented
both offline, through task assignments and on-line with synchronization meetings and dedicated, remote,
interviews.

Throughout the project lifespan, the expectation is to corroborate this initial analysis with evidence coming
from surveys performed by adopting sound and systematic methodologies, thus offering third party
stakeholders the ability to verify, exploit and re-use the outcomes of such CPSwarm activity.

3.2 Survey of Tools and Frameworks currently adopted for CPS design / development

CPSwarm involves industrial partners coming from different branches including drones, rovers and car system
manufacturing. This section describes the tools and frameworks that are currently used for designing,
simulating and building runtime environments for CPS in these branches.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 7 of 73

3.2.1 Design

CPS design can be roughly defined as the process of setting up CPS hardware and software for a specific
purpose. Technologies and methods used for such a purpose are clearly dependent on the actual application
domain and on specific targeted results, thus generating a high variability of viable solutions and approaches
that should be considered in bootstrapping the CPSwarm design. Nevertheless, some common platforms
and approaches emerge, such as the adoption of the ROS – Robotic Operating System environment in both
drone and rover design.

ROS is defined as “an open-source, meta-operating system for robots. It provides the services expected from an
operating system, including hardware abstraction, low-level device control, implementation of commonly-used
functionality, message-passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple computers”1. ROS, therefore, enables
easier development of robotic solutions thanks to the ability of supporting easier solutions for issues that are
typical of software development in the robotics domain. In particular, it helps dealing with:

• Distributed communication. Some robots, in fact carry multiple computers on board, each controlling
a subset of the robot sensors and/or actuators. When multiple robots attempt to cooperate on a
shared task, communication is needed to coordinate the single efforts, etc.

• Software reuse. ROS standard packages provide stable implementations of many important robotic
algorithms. Moreover, the ROS message passing interface is becoming the de-facto standard for
robot software interoperability.

• Rapid testing. ROS systems separate the low-level direct control of hardware from the high-level
processing and decision-making, using separate “programs”. Such separation permits to easily switch
low-level control with simulators, to enable testing the higher levels of a robotic system. Moreover,
ROS supports sensor logging and playback, thus enabling experimentation with data captured in
real-world, without requiring to perform actual field-test campaigns. The change between simulated
and real-hardware is almost seamless.

Subsequent sections, try to provide a short overview of most relevant technologies adopted in the flying
drones, rover and autonomous vehicles domains, highlighting commonalities and overlap, where possible.

 Drones 3.2.1.1

Building a drone requires more than just flight controls — it requires at least: vision and/or GPS based
navigation, obstacle avoidance and path planning. For this reason, in CPSwarm it has been selected the PX4
Project2, one of the leading flight control platforms, as the base platform upon which building the complex
coordination and swarm behaviors targeted by the project. The PX4 architecture is designed to be ready for
complex environments and can empower any vehicle from racing and cargo drones to ground vehicles.

PX4 is a complete autopilot solution composed by several parts:

• PX4 Flight Stack3 (the flight control system / autopilot)
• MAVLink4: a highly efficient, lightweight and blazing-fast robotics communication toolkit
• QGroundControl5: a modern, mobile and desktop user interface to configure the system and execute

flights
• HITL (hardware in the loop) /SITL (software in the loop) simulation based on jMAVSim6 and ROS7 +

Gazebo8.

1 http://wiki.ros.org/ROS/Introduction
2 http://px4.io/
3 https://dev.px4.io/en/concept/flight_stack.html
4 http://qgroundcontrol.org/mavlink/start
5 http://qgroundcontrol.com/
6 https://pixhawk.org/dev/hil/jmavsim
7 http://www.ros.org/

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 8 of 73

Simulation and modelling of software functions (e.g. control algorithms, AHRS - Attitude and Heading
Reference System, collision avoidance) and modelling tools is typically accomplished by exploiting
Simulink/MATLAB9, a block diagram environment for multidomain simulation and Model-Based Design.
These tools are also used for generating production-level code, which is subsequently tested using HITL
simulation, based on jMAVSim, or SITL simulation, based on Gazebo and ROS.

To simulate a drone behavior and to create the corresponding model the CPSwarm drone manufacturer
(DGSKY) typically exploits SDF10: a special purpose XML dialect that allows describing objects and
environments for robot simulation, visualization, and control. SDF, in particular, permits to represent all
“physical” aspects of a robot, be it a simple chassis with wheels or a humanoid. In addition to kinematic and
dynamic attributes, sensors, surface properties, textures, joint friction, and many more properties can be
defined for a robot. These features allow exploiting SDF for simulation, visualization, motion planning, and
robot control.

 Rovers 3.2.1.2

As stated above, ROS – Robotic Operating System – can be considered as the de-facto standard for the
design of ground robots. In ROS all the robot parts are defined in a so-called URDF description file. This plain
text file describes two types of components: links and joints. On one hand, links define the fixed parts of a
robot, with their weight and inertia. They also include the 3D model of each robot part described in the STL
format. This, for example, allows computing possible collisions and showing the complete 3D model of the
robot in visual simulators. Joints, on the other hand, represent how links are connected, in a hierarchic model.
In other words, each joint defines a connection from a parent link to a child link. For example, a wheel is
modelled as a revolution joint that connects the “wheel link” that contains the 3d model of wheel, with the
“base link” that defines the frame of the robot to which the wheel is attached. It is easy to understand that
this hierarchy-based modeling can iteratively be applied to describe any kind of robot, of whatever
complexity. The overall URDF file describing a given robotic platform, e.g., a rover, is loaded as a parameter
of the ROS system and made available to any node (computational unit) inside ROS.

ROS provides a complete toolchain that greatly facilitates interaction (control) and monitoring of robots, e.g.,
through comfortable and editable graphic interfaces such as: Rviz11 and RQT12. Both interfaces consist of a
3D environment visualizer that allows viewing how the robots perceives, measures and interacts with the
environment. Based on a pluggable modules architecture, ROS, together with its companion software,
provides the possibility of not only developing custom packages but also reusing third party tools, very
easily.

 Automotive 3.2.1.3

Software systems in a modern vehicle are among the most complex software systems existing today.
Software in complex Electronic Control Units can contain millions of lines of code (modern vehicles contain
up to 100 million lines of code) with a complex structure of real time components, acting on thousands of
attributes which are adjusted to refine the car´s character, fulfil the regulations, etc.

For representing the requirements driving the design of such complex systems and to manage and orient the
corresponding software design processes, tools such as IBM Rational Doors13 are widely exploited. For high-
level software design, general UML tools such as IBM Rational Rhapsody14 or Modelio15 are used to represent

8 http://gazebosim.org/
9 https://www.mathworks.com/products/simulink.html
10 http://sdformat.org/spec
11 http://wiki.ros.org/rviz
12 http://wiki.ros.org/rqt
13 http://www-03.ibm.com/software/products/en/ratidoor
14 http://www-03.ibm.com/software/products/en/ratirhapfami

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 9 of 73

software structures (e.g., UML component of class diagrams) and/or behaviors. Since typical automotive
software architectures are mainly based on the AUTOSAR (AUTomotive Open System ARchitecture)16
standard, some specific tools are used for automotive software development. For example, for model-based
specification of electronic vehicle systems and their components, as well as for the design vehicular network
architectures, the Vector’s PREEvision17 tool is frequently used. For designing AUTOSAR-compliant (low-level)
software structures, including port interfaces, data types, composition of components, or scheduling, tools
such as, e.g., DaVinci Developer18 tool from Vector are used. Whereas, simulation and modelling of software
functionality (e.g., control algorithms), is typically accomplished with tools such as Ascet19 from ETAS or
Simulink/MATLAB from MathWorks. These tools are also used for the generation of real-time, production
code. In CPSwarm, the plan is, therefore, to integrate Simulink/MATLAB for the development of the
exemplary CPSwarm automotive application.

3.2.2 Simulation

CPS simulation can be described as a complex domain where a plethora of solutions and approaches to
simulation are available. Simulation tools by themselves are strongly related to the purpose of the simulation
process. Depending on the aspects under consideration several different types of simulations can be
performed, from finite state simulation for structural analysis to particle filtering analysis for motion in fluids,
to physics simulation for evaluating action-reaction chains in the envisioned CPS-World interactions.
Providing an extensive analysis of currently adopted simulation engines and techniques, is an overwhelming
task and can be considered slightly out of topic for this document. Instead, a more focused analysis on most
used simulation tools and technologies in the domain lying at the intersection between robotics and swarm
algorithm research is exactly the kind of information needed to bootstrap the CPSwarm architecture design.

Based on this assumption, an initial survey of simulation platforms dealing with robotic systems and able to
be exploited in swarm algorithms testing, and design, has been performed and it is currently being finalized
(the corresponding task T6.1, just started at M6). In this analysis, the CPSwarm partners aimed at identifying
the major solutions for CPS simulation, with a focus on the drone / rover domain and at evaluating them with
respect to a set of initial, qualitative, requirements drawn from each partner expertise.

Identified requirements for surveyed simulators are the following:

1. Ease of use. Simulators shall be easy to use and integrate. Ideally to be successfully integrated in the
CPSwarm workbench a simulator shall require minimal or no adaptation and should not force core-
level development;

2. Flexibility. Integration with other tools, e.g., for remote control / set-up of simulation parameters
shall be possible;

3. Extensibility. Investigated simulators shall be in principle independent from the kind of modelled CPS.
This is particularly important for physics simulators where specific robot customization shall be
avoided;

4. Scalability. One of the approaches to swarm design envisioned in CPSwarm is based upon
evolutionary optimization of the swarm parameters. This implies a relevant number of multi-robot
simulations, equal to the number of solution candidates evaluated at each generation multiplied by
the number of generations needed to reach a viable solution. For example, assuming a very simple
set-up with 10 candidates evaluated at each generation and a mean number of generation of 100,
targeted simulators will be required to execute 1000 different multi-cps simulations. It is easy to

15 https://www.modelio.org/
16 https://www.autosar.org/
17 https://vector.com/vi_preevision_en.html
18 https://vector.com/vi_davinci_developer_en.html
19 https://www.etas.com/en/products/ascet_software_products.php

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 10 of 73

understand that in such conditions the ability to run in parallel, on multiple machines is one of the
crucial aspects that must be evaluated.

5. Abstraction. Ideally, simulation granularity shall be tunable to the kind of feature / problem being
evaluated. While simulation of the general behavior of a swarm might not benefit of a detailed, 3D,
physical simulation, evaluation of the behavior of a swarm individual in response to external
influences might require fine simulation of forces, accelerations and moments involved in the
analyzed interaction.

As can be easily noticed, such requirements are not yet refined enough to drive a selection of a precise
simulation tool or technique (most likely co-simulation will be needed due to the different aspects being
considered in a CPS design). However, they can already be leveraged to pre-screen the huge amount of
currently available simulation solutions and to prepare the right software infrastructure needed for
integrating them in the CPSwarm workbench being currently designed.

In the following a preliminary list of candidate simulation tools, partly derived from literature research, e.g.,
exploiting the analysis reported in [2] and in [3], and partly obtained by direct investigation carried by the
CPSwarm partners, is reported. It must be noticed that all these tools are mainly aimed at evaluating motion
inside a certain environment while few or none of them allows simulation of other relevant aspects, e.g.,
inter-robot communication, etc.

Motion simulators may be divided in 2 main categories: bi-dimensional and tri-dimensional simulators, they
are respectively listed in Table 1and in Table 2.

Table 1. Initial list of simulation tools analysed to direct the architecture design.

Simulation
Engine License Language /

formats
Supported Robotic
Platforms

Possibility to
extend

Fidelity
(functional,
physical)

OS Active
development

Stage20 GPL v2.0
C++,
Configurations in
plain text

Pioneer,
Chatterbox,iRobot
Roomba,
UMASS UBot

yes Low,low Linux,
Windows yes

TeamBots21

Free for
education
and
research

Java,
configuration in
source code or
plain text files

Probotic Cye,
Nomad 150 yes ?,low

Linux,
Windows,
MacOS

no

Swarm22 GPL v2.0 Java – Objective-
C - -

Linux,
Windows,
MacOS,
Solaris

no

MRSim23 All rights
reserved Matlab - - no

STDR24 GPL v3.0
C++,
configuration in
XML and YAML

Khepera, Pandora yes Low,low Linux yes

Rossum GPL v2.0 / Java - - no

20 http://playerstage.sourceforge.net/doc/stage-svn/
21 https://www.cs.cmu.edu/~trb/TeamBots/
22 http://www.swarm.org/wiki/Main_Page
23 https://de.mathworks.com/matlabcentral/fileexchange/38409-mrsim-multi-robot-simulator--v1-0-
?requestedDomain=www.mathworks.com
24 http://wiki.ros.org/stdr_simulator

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 11 of 73

Playhouse25 MIT

MobotSim26 All rights
reserved Visual Basic - - Windoes no

Table 2. . Initial list of 3D Simulation tools analysed to direct the architecture design.

Simulation
Engine License Language /

formats
Supported Robotic
Platforms

Possibility to
extend

Fidelity
(functional,
physical)

OS Active
development

Gazebo
Apache
License
v2.0

C++,
configuration
files in SDF

Many including:
PR2, Pioneer2 DX,
IRobot Create,
TurtleBot, etc.

yes High,high
Linux,
Windows,
MacOS

yes

ARGoS n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Webots n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Swarmbot3D n.d. n.d. n.d. n.d. n.d. n.d. n.d.

MuRoSimF n.d. n.d. n.d. n.d. n.d. n.d. n.d.

DPRSim n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Mission Lab n.d. n.d. n.d. n.d. n.d. n.d. n.d.

MORSE n.d. n.d. n.d. n.d. n.d. n.d. n.d.

SimSpark n.d. n.d. n.d. n.d. n.d. n.d. n.d.

V-REP n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Breve n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Simbad n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Marilou n.d. n.d. n.d. n.d. n.d. n.d. n.d.

jMAVSim n.d. n.d. n.d. n.d. n.d. n.d. n.d.

peekabot n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Clearly, the analysis is not yet complete (see n.d. values in Table 2) and actual completion of the survey is
expected by M9, when the deliverable D6.1 Initial Simulation Environment will be published, summarizing the
outcomes of such survey and describing a very first implementation of the CPSwarm Simulation Environment.
Nevertheless, it appears quite evident that a single-simulator solution is not viable, thus requiring
architectural solutions able to deal with several different simulators. Moreover, as already stressed before,
analyzed simulators only consider robot movement in a selected test environment, Other relevant parameters
such as network connectivity, inter-robot communication, and human interference are not considered and
would probably require dedicated simulation tools.

In summary, this very first analysis of existing simulation tools provided the two following architectural
requirements:

1. Support to different simulators shall be provided
2. Co-simulation shall be included in the workbench design

25 http://rossum.sourceforge.net/sim.html
26 http://www.mobotsoft.com/?page_id=9

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 12 of 73

3.2.3 Runtime

 ROS and PX4 3.2.3.1

The CPSwarm consortium acknowledges that ROS is currently being adopted as the de-facto standard for
professional-level robot programming. For such a reason, ROS is considered as the main target runtime for
CPSwarm developed CPS, although many other runtimes are targeted, also outside of the robotics domain.

According to this choice, flying platforms targeted in CPSwarm are based on ROS compatible software and
hardware stacks. In CPSwarm, the drones employed in the project pilots exploit the PX4 Project flight control,
one of the leading flight control platforms available on the market. Its architecture (Figure 1) encompasses
the following main components:

Figure 1 - The PX4 software architecture.

µORB Middleware
The uORB is an asynchronous publish()/subscribe() messaging API used for inter-thread/inter-process
communication. The object request broker provides a data structure for data distribution. It follows the one-
to-many publish-subscribe design pattern: a publisher wanting to share information advertises a topic. A
topic is defined as a semantic message channel, such as ’attitude’ or ’position’. A subscriber can subscribe to
a topic, and after the subscription is established ask at his own pace for new data (polling), or be woken from
the thread sleep state at the instant new data is available.

MAVLink
MAVLink27 is a very lightweight, header-only message marshalling library for micro air vehicles / drones.
MAVLink follows a modern hybrid publish-subscribe and point-to-point design pattern: Data streams are
sent / published as topics while configuration sub-protocols such as the mission protocol or parameter
protocol are point-to-point with retransmission. Because MAVLink doesn't require any additional framing it is
very well suited for applications with very limited communication bandwidth. Its reference implementation in
C/C++ is highly optimized for resource-constrained systems with limited RAM and flash memory.

MAVROS
The mavros ROS package enables MAVLink extendable communication between companion computers
running ROS, MAVLink autopilots and MAVLink enabled GCS.

 AUTOSAR 3.2.3.2

In the automotive industry, runtime environments used on electronic control units depend on the available
resources and safety or performance requirements. In resource-constrained electronic control units for

27 http://qgroundcontrol.org/mavlink/start

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 13 of 73

safety-relevant controls (e.g., for engine control, stability or breaking), AUTOSAR is used. AUTOSAR is a
standardized automotive software architecture and it provides hard real-time, deterministic environment with
static scheduling, defined low-level services (e.g., for memory management or communication) and interfaces
between software components. On control units with more computational resources, VxWorks or real-time
Linux derivatives are used. TTTech’s platform solutions can run different operating systems (AUTOSAR,
VxWorks, Linux, etc.).

3.3 Survey of existing modelling standards / patterns

3.3.1 Existing modeling standards

Depending of the methodology used, the company size, the company history, etc., CPS design may be done
across many domains adopting many different tools. This variety of domains and tools implies the co-
existence of several modelling standards or patterns which might be relevant in the context of CPS swarm
modelling.

The following table lists the existing standards identified as potentially relevant for CPSwarm project. For
each standard, a quick summary is provided, to explain its purpose, as well as the organisation responsible of
its definition.

Table 3. Modelling standards for CPS swarm design.

Standard Summary Organisation

AADL

The SAE AADL is an extensible architecture analysis and design
language for embedded and real-time systems. The core language
provides a precise semantic specification for modelling task
and communication architectures and their mapping onto distributed
execution platforms.

SAE
www.sae.org

ARINC 653

ARINC 653 (Avionics Application Standard Software Interface) is a
software specification for space and time partitioning in Safety-critical
avionics Real-time operating systems. It allows hosting multiple
applications of different software levels on the same hardware in the
context of a Integrated Modular Avionics architecture.

AEEC
www.aviation-ia.com

AUTOSAR

AUTOSAR (AUTomotive Open System ARchitecture) defines a set of
specifications for describing modules (basic, hardware and software),
defining application interface and building a common development
methodology.

AUTOSAR Consortium
http://www.autosar.org/

BPEL

Business Process Execution Language is an OASIS standard executable
language for specifying interactions with Web Services. Processes in
Business Process Execution Language export and import
information by using Web Service interfaces exclusively. BPEL is an
orchestration language that specifies an executable process that involves
message exchanges with other systems, such that the message
exchange sequences are controlled by the orchestration designer.

OASIS
www.oasis-open.org

CORBA
CCM

CORBA Component Model (CCM) is an addition to the family of CORBA
definitions. It was introduced with CORBA 3 and it describes a standard
application framework for CORBA components.

OMG
www.omg.org

FMI FMI (Functional Mock-up Interface) defines a standardized interface to
be used for model exchange and cyber physical system simulation.

Modelica Association
http://fmi-standard.org

IP-XACT
IEEE 1685-
2009

IP-XACT is an XML format that defines and describes electronic
components and their designs. The standard ensures delivery of
compatible component descriptions from multiple component vendors,
enables exchanging complex component libraries between electronic
design automation (EDA) tools for SoC design (design environments),
describes configurable components using metadata, and enables the
provision of EDA vendor neutral scripts for component creation and

SPIRIT Consortium
www.spiritconsortium.o

rg

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 14 of 73

configuration (generators, configurators).

MARTE

MARTE (Modelling and Analysis of Real-Time and Embedded systems)
is a specification of a UML profile that aims to replace UML capabilities
for model-driven development of Real-Time and Embedded Systems
(RTES), and for analysing schedulability and performance of UML
specifications.
It provides capabilities such as the support for specification, design, and
verification/validation stages, the definition of non-functional properties,
time and time related concepts and analysis frameworks.

OMG
www.omg.org

ROS

ROS (Robot operating System) is a set of software frameworks for robot
software development. ROS provides standard operating system
services such as hardware abstraction, low-level device control,
implementation of commonly used functionality, message-passing
between processes, and package management. ROS uses the Unified
Robot Description Format (URDF), which is an XML format for
representing a robot model as well as COLLADA (COLLAborative Design
Activity), which is an interchange file format for interactive 3D
applications (ISO/PAS 17506).

ROS community
http://www.ros.org/

SCXML SCXML (State Chart XML) is an XML notation for describing complex
finite state machine in a generic way.

W3C
https://www.w3.org/TR/

scxml/

SysML

SysML is a UML Profile for System Engineering intended to support
modelling of a broad range of systems, which may include hardware,
software, data, personnel, procedures, and facilities. Its main purpose is
to assist in the system requirements engineering and design processes,
having as background the reference system processes and
principles defined in the ISO System Engineering – System Life Cycle
Processes [ISO15288], as well as industrial practices.

OMG
www.omg.org

SystemC

SystemC is a set of C++ classes and macros which provide an event
driven simulation kernel in C++. These facilities enable a designer to
simulate concurrent processes, each described using plain C++ syntax.
SystemC processes can communicate in a simulated real-time
environment, using signals of all the data types offered by C++, some
additional ones offered by the SystemC library, as well as user defined.
In certain respects, SystemC deliberately mimics the hardware
description languages VHDL and Verilog, but is more aptly described as
a system-level modelling language.

OSCI
www.systemc.org

UML

Unified Modelling Language is a general-purpose modelling language
used to specify, visualize, modify, construct and document the artefacts
of an object-oriented software intensive system under development. UML
offers a standard way to visualize a system's architectural blueprints,
including elements such as actors, business processes,
components, activities, programming language statements, database
schemas, and reusable
software components.

OMG
www.omg.org

Verilog

Verilog is a hardware description language used to model electronic
systems. Verilog is most commonly used in the design, verification, and
implementation of digital logic chips at the register transfer level (RTL) of
abstraction. It is also used in the verification of analogue and mixed
signal circuits.

IEEE
www.ieee.org

VHDL

VHDL is a hardware description language used in electronic design
automation to describe digital and mixed-signal systems such as field
programmable gate arrays and integrated circuits, and has constructs to
handle the parallelism inherent in hardware designs.

IEEE
www.ieee.org

Some open source examples using these standards are detailed in D4.1 deliverable.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 15 of 73

The CPSwarm modelling environment and language described in deliverable D5.1 will be built on top of
these standards (and possibly other relevant ones, currently emerging) adding new concepts related to the
swarm design domain, wherever needed.

3.3.2 Existing Swarm Intelligence Models

In literature, swarm intelligence models are described as the process of adopting models found in nature in
swarm behavior of, e.g., insects [4]. Swarm intelligence models are computational models to undertake
distributed (optimization) problems in a swarm of, e.g., CPSs. The state-of-the art process follows the steps
described in Figure 2. Nature inspired and still inspires in imitating its behavior to solve complex real world
problems. A closer look is taken on the actions and an analysis of observations enables the creation of a
model. The simulation gives then an assessment of how well the intended result can be achieved with a given
behavior. This assessment is usually given through a fitness value. Finally, the algorithm is extracted to design
a nature or bio-inspired swarm intelligence algorithm.

Figure 2 - Process of designing a swarm intelligence model and the corresponding algorithm (adapted from [5]).

Examples of swarm intelligence models include e.g.:

• Insect swarms (ant/bee colonies, etc.)
• Bacteria swarms
• Fish schools
• Bird flocks
• Quadruped herds

A more detailed overview of swarm intelligence models can be found in D4.4.

In all swarm intelligence models, the swarm is made of individual, simple agents. Through communication
concepts they cooperate without a central control. Only through their interactions a collective behavior
emerges, that can solve complex tasks. This makes the model easy to scale.

Five basic principles set the basis for swarm intelligence models [4]:

1) Proximity: ability to perform simple computation of time and space, respond to environmental
stimuli

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 16 of 73

2) Quality: react to quality (fitness) factors
3) Diverse Response: distribute tasks
4) Stability: maintain the group behavior in case of environmental changes
5) Adaptability: change the group behavior in case of environmental changes

Beside biological models, a very popular boids model was introduced by Reynolds [6] to describe the
flocking behavior of birds. The name “boid” is a shortened version of “bird-oid object”. As in other swarm
algorithms, the complexity arises from three simple rules:

• Rule 1 - Separation: Avoid Collision with neighboring birds;
• Rule 2 - Alignment: Match the velocity of neighboring birds;
• Rule 3 - Cohesion: Stay near neighboring birds.

Many subsequent models use these rules, vary them, add variables and extend the model’s functionality.

In summary, each bio-inspired swarm intelligence model stand on its own. There is no ability to model swarm
algorithms with a common modelling approach for swarm intelligence. Therefore, a future step for the
CPSwarm project is to define a common approach with a common modeling language for modeling swarm
intelligence.

3.4 Preliminary Analysis of design methodologies applicable to the CPS domain

3.4.1 Methodologies for Swarm & Self-Organizing Behavior Design

Swarm behavior results from individual actions of the agents in the swarm. The actions that the agents
should take can be designed using two classes of approaches, behavior-based design or automatic design
[7].

 Behavior-Based Design Methods 3.4.1.1

Behavior-based design is an iterative bottom-up process where the agents’ behavior is designed in a trial and
error process. The behavior of each agent is designed and the resulting swarm behavior is observed. This is
repeated until the desired swarm behavior is reached. In the following, the most commonly used behavior-
based design methods are introduced.

Probabilistic Finite State Machine Design
Probabilistic finite state machines (PFSMs) are special types of state machines where the transitions between
states happen non-deterministic with a given probability. The agent is described as a state machine where its
actions are defined by the current state and the sensor inputs. The state is defined by the internal memory of
the agent, the state transitions result from the sensor inputs. The transitions probabilities between states can
be fixed or changing over time according to a mathematical function, e.g. the response threshold function
[8]. PFMS design has been applied to aggregation [9], chain formation [10], and task allocation [11].

Virtual Physics-Based Design
Virtual physics-based design is inspired by classical physics. Each agent is considered as a particle exerting
forces on other agents and experiencing forces by other agents and the environment. To compute the forces
acting on an agent, this agent needs to be able to sense other agents and distinguish them from the
environment. Different potential functions can be used to calculate the total force acting on an agent. This
design method is mainly used for creating spatial formations such as pattern formation, collective
exploration, or coordinated motion.

 Automatic design methods 3.4.1.2

Automatic design methods allow to automatically generate the behaviors of individual agents from a high-
level swarm behavior description. The required agent behavior that results in the desired swarm behavior is
achieved without the need for a developer to explicitly define it.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 17 of 73

Reinforcement Learning
Reinforcement Learning (RL) agents learn a behavior by receiving positive and negative feedback for the
cumulative result over all agents. This is a trial-and-error process where an agent behavior is developed that
maximizes the rewards received. Several challenges still exist when applying RL to swarm robotics: (i) It is
difficult to decompose the global reward into individual rewards for each agent. (ii) The state space of RL
problems is huge as the agent interactions introduce high complexity and make the environment non-
stationary from the agents’ perspective. (iii) The agents perceive only parts of the environment making it
difficult to find the optimal behavior.

Evolutionary Robotics
Evolutionary robotics (ER) applies the Darwinian principle of natural selection, as described in biology, to
robotics. Through multiple iterations an agent behavior is evolved that exhibits the desired global swarm
behavior. The process begins with a population of random individual agent behaviors. Every behavior is
evaluated experimentally and ranked according to a fitness function that evaluates the swarm-level behavior.
The highest scoring behaviors are modified using genetic operators like cross-over or mutation forming the
next generation of agent behaviors. It is therefore necessary that the agent behavior is implemented in a
generic structure that allows application of genetic operators. Typically, artificial neural networks (ANN) are
chosen which can be further distinguished into feed-forward ANN where no memory is required and
recurrent ANN which take previous actions and observations into account. Most commonly, homogeneous
swarms of agents are considered but also heterogeneous swarms can be evolved if the fitness function is
designed properly. The challenges in ER are: (i) Evolution is a computationally expensive process since each
agent behavior needs to be evaluated experimentally. (ii) Convergence of the evolutionary process is not
guaranteed. (iii) ANN are difficult to understand and hence considered as black-box.

Other Learning and Automatic Design Methods
The ALLICANCE multi-robot architecture framework proposed by [12] features on-line learning that focuses
on robust and adaptive task-allocation. [13] proposed the learning momentum framework which combines
on-line learning with virtual physics-based design. [14] introduced an algorithm for on-line learning of
certain parameters of agent behaviors to achieve diversity and specialization. [15] combined virtual physics-
based design with ER in an off-line learning approach to achieve navigation with obstacle avoidance. [16]
proposed a learning algorithm for multi-agent coordination that estimates the coordination cost to choose
the best coordination method. [17] concluded that particle swarm optimization can achieve a higher degree
of diversity in a swarm of robots compared to a genetic algorithm for on-line learning of parameters.

3.4.2 Methodologies for user-centered design applied to Human-CPS interaction

Last few years witnessed a sensible rise in the actual spread of drones, rovers and autonomous robotic
platforms. Thanks to dramatic cost reductions, and to a much wider target community including
householders, teenagers, amateurs, photographers, etc., robotic platforms, drones and rovers are becoming
part of the everyday life of many people around the world. With this increasing co-existence of humans and
robotic platforms, interaction between human and robots is becoming of critical importance, and several
researchers are now targeting their efforts at finding better ways to cooperate and live with such cybernetic
entities. Stemming from the well-established field of Human-Computer-Interaction (HCI), the Human-Robot-
Interaction (HRI) community is seeking new and innovative ways to support natural cooperation between
people and robots.

According to literature, several relevant cases might require effective cooperation between humans and
drones (or rovers). Flying buddy [18], for example, envisions several scenarios in which humans might exploit
drones to extend their physical abilities, e.g., by flying over the people field of view, reporting situation from
above in a search and rescue task, or by helping people shopping. Drone-based flying displays have been

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 18 of 73

proposed as personal companions and to actively support people in emergency situations (e.g. search and
rescue) or in tour guides [19]. In such scenarios, co-located interaction is the main pattern to be addressed,
and can usually be mediated (e.g. using a remote or a phone) or direct e.g., using voice or gestural control.

In past years, HRI focused on anthropomorphic robots exploiting posture, and artificial facial expressions to
establish a certain degree of engagement and empathy between the human and the robotic platform.
Emotions, in fact, have been shown to have a vital role in human interaction and support processes such as
perception, decision-making, empathy, memory, as well as social interactions [20]. This affective dimension,
for example, can aid in intelligent interaction and decision-making [20], as well as in gaining social
acceptance for robots in domestic environments [21]. Drones and rovers, however, present different physical
characteristic that preclude designers to exploit facial features or gait to represent emotional states. Other
characteristics, e.g., flight patterns and/or behaviour shall therefore be exploited to convey the “emotional”
state of such platforms, thus enabling a much more natural interaction between them and the humans.

While one-to-one interaction between drones and humans requires a certain degree of mutual empathy and
understanding, interaction between multiple rovers (or drones) and their supervisory team are even more
challenging, as in such cases natural interaction encounters issues involving: remote control (in many cases
robotic platforms are not in “sight” of their supervisors), interaction target (e.g., a single drone in a swarm or
the swarm), etc. Conventional solutions address these interaction tasks by using some kind of physical device
when communicating with the systems, e.g., keyboard or mouse, thus limiting the scope and dimension of
such an interaction. However, more innovative and effective user interfaces, namely Natural User Interfaces
(NUI), might be exploited to allow, e.g., non-expert users, who have a little knowledge on how to operate a
robot (or a group of robots) to interact using natural gestures [22].

Given the CPSwarm application scenarios, depicted in Section 4.2 and better detailed in deliverable D2.3 –
Initial Requirements Reports (public), NUI and, more in general, all methodologies and techniques aimed at
defining a more effective interaction between humans and robots are among the best candidates for
addressing Human-to-CPS interactions. Particularly, CPSwarm project is interested in direct interaction
between humans and swarms of CPS to achieve coordinated operation in Search and Rescue and in Logistics,
while the focus is on mediated interaction in the automotive use case, where humans shall be able to
acknowledge (or not) platooning and other swarming behaviour while being inside the CPS.

For this purpose, CPSwarm is planning, on one side, to leverage on existing approaches at the state of the art
regarding emotion encoding and direct, e.g., gesture based, interactions with swarms of CPS. For example,
the work by [23] on emotion encoding would enable the definition of drone/rover personality models to be
included in the CPSwarm modelling library. On the other hand, works like the one of [24] on NUI for
interactions between drones/rovers and humans might define a viable set of interaction patterns, e.g.,
gesture based, to be included as supported interaction models in the CPSwarm library.
On the other side, within the CPSwarm context, the aim is also to implement and apply methodologies for
assessing the effectiveness and intuitiveness of different, possible, HRI designs. Among the different solutions
already published in literature, Adams [25] used Goal Directed Task Analysis to determine the interaction
needs of officers from the Nashville Metro Police Bomb Squad. Sholtz et al. [26] used the Endsley’s Situation
Awareness Global Assessments Method to determine robotic vehicle supervisors’ awareness of when vehicles
were in trouble and thus required closed monitoring or interventions. Yanco and Drury [27] employed
usability testing to determine among other things how well a search and rescue interface supported use by
first responders. Drury et al. [28], also provided a first adaptation of the well-known, formal assessment
method named Goals, Operations Methods and Selection Rules (GOMS) to the Human-Robot Interaction
domain.

In summary, in the upcoming months the CPSwarm consortium is planning to concentrate on two main
aspects regarding Human-CPS-Interaction. The first involves natural ways of collaboration between humans
and drones/rovers, while the second is focused on suitable, possibly formal, methodologies to assess the

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 19 of 73

effectiveness of tentative designs, with the aim of supporting the overall swarm design activities carried
within the project framework.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 20 of 73

4 Architecture Design

4.1 Methodology

This section presents the key concepts of the methodology for software architecture design adopted in
CPSwarm. In particular, the basic design references and principles adopted in the architecture definition
process are presented, thus enabling the occasional reader to better understand the design choices taken by
the project consortium. Experienced readers, aware of the ISO/IEC/IEEE 42010:2011 standard, might want to
skip this section.

4.1.1 Software Architecture Design Standards

The process used for software architecture design is based on ISO/IEC/IEEE 42010:2011 “Systems and
software engineering - Architecture description” [1]. Such a standard establishes a methodology for the
Architectural Description (AD) of software-intensive systems. It implies a workflow, which includes the
following steps:

• Identify and record the stakeholders for the architecture and the system of interest;
• Identify the architecture-related concerns of those stakeholders;
• Select and document a set of architecture viewpoints which can address the stakeholder concerns;
• Create architecture views (one view for each viewpoint) which contain the architectural models;
• Analyze consistency of the views;
• Record rationales for architectural choices taken.

The IEEE 42010:2011 standard extensively uses viewpoints and views to document different aspects of a
software system allowing to focus on specific concerns and issues, while at the same time ensuring an overall
consistency of the architecture design. This approach has been validated in several success cases, showing a
higher quality of produced artifacts and outcome specification with respect to less-structured approaches
trying to tackle all issues in a single pass. Viewpoints are collections of patterns, templates and conventions
for constructing one type of view. One example is the functional viewpoint (and therefore the functional
view) which contains all functions that the system should perform, the responsibilities and interfaces of the
functional elements and the relationship between them.

4.1.2 Definitions

The following definitions are derived from [1] and from the extensions provided by Rozanski and Woods in
[29].
• Architecture: fundamental concepts or properties of a system in its environment, embodied in its

elements, relationships, and in the principles of its design and evolution. In other words, it’s the concept
of a system’s structure, properties, interaction with its environment, etc.

• Architectural Description: work product used to express an architecture, such as component diagram,
data flow diagram, etc.

• Stakeholder: an individual, team, organization, or classes thereof, having an interest in the realization of
the system

• Concern: an interest in a system, which is relevant to one or more stakeholders. It might be a
requirement (functional or non-functional) or an objective that a stakeholder has regarding the system.

• View: a set of models and descriptions representing a system or part of a system from the perspective of
a related set of concerns

• Viewpoint: collection of patterns, templates and conventions for constructing one type of view
• Model: a simplified representation of an aspect of the architecture, could be in form of a UML diagram
• System-of-Interest: the system whose architecture is under consideration

The relationships between these concepts and the corresponding system-of-interests are shown in Figure 3.

The core of the modeling approach formalized within the IEEE 42010:2011 standard is composed of the
architecture view and the architecture viewpoint concepts. According to [1], they are defined as follows.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 21 of 73

• Architecture viewpoint: “Work product establishing the conventions for the construction, interpretation
and use of architecture views to frame specific system concerns”

• Architecture view: “A representation of a whole system from the perspective of a related set of
concerns.”

Figure 3 - Architecture description concepts (Adapted from [1])

A viewpoint defines, in other words, the aims, the intended audience, and the content of a class of views and
defines the concerns that such views will address e.g. Functional Viewpoint or Deployment Viewpoint. A view
conforms to a viewpoint and communicates the resolution of a number of concerns (and a resolution of a
concern may be communicated in a number of views).

According to [29] using vision (view) and point of view (viewpoint) to describe the system architecture can
bring many benefits such as:

• Separation of concerns: Separating different models of a system into distinct (but related)
descriptions helps the design, analysis and communication processes by allowing designers to focus
on each aspect separately.

• Communication with stakeholder groups: Different stakeholder groups can be guided quickly to
different parts of the AD based on their particular concerns, and each view can be represented using
language and notation appropriated to the knowledge, expertise, and concerns of the intended
readership.

• Managements of complexity: By treating each significant aspect of the system separately, the
architecture can focus on each in turn and so help conquer the complexity resulting from their
combination.

• Improved developer focus: Separating into different views those aspects of the system that are
particularly important to the development team, helps ensuring that the right system is built.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 22 of 73

4.1.3 Software Architecture Design Process

In a software architecture design process there are several principles that should be followed to ensure a
high quality design. The different stakeholders should be engaged in the system design and their concerns
taken into account. There might be conflicting or incompatible concerns from different stakeholders which
must be dealt with. Besides, an effective way to communicate decisions and solutions should be
implemented and the whole architecture design process should be flexible and pragmatic to be able to deal
with changing requirements. The entire process should be technology-neutral.

 Architecture Design Process 4.1.3.1

Rozanski and Woods have based the architectural design process on the following definition [29]:
"Architecture Definition is a process by which stakeholder needs and concerns are captured, an architecture to
meet these needs is designed, and the architecture is clearly and unambiguously described via an architectural
description."
The foundation for this process is the ISO/IEC/IEEE 42010:2011 standard and the CPSwarm project used the
process proposed by [29], which is aligned to such standard (see Figure 4).

Figure 4 - Activities supporting architecture definition [29]

 Architecture Viewpoints 4.1.3.2

Rozanski and Woods defined seven core viewpoints to document a software architecture. They are:

• Context viewpoint: The context viewpoint describes interactions, relationships as well as
dependencies between the system-of-interest and its environment. The environment includes those
external entities with which the system interacts, such as other systems, users, or developers.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 23 of 73

• Functional viewpoint: Describes the system’s functional elements, their responsibilities, interfaces,
and primary interactions. A Functional view is the cornerstone of most AD. It drives the shape of
other system structures such as the information structure, concurrency structure, deployment
structure, and so on.

• Information viewpoint: The information viewpoint describes the data models and the data flow as
well as the distribution of data along the system components. This viewpoint develops a complete
but high-level view of static data structures and information flows within the system being designed.

• Concurrency viewpoint: Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the system that can execute
concurrently and how they are coordinated and controlled. This entails the creation of models that
show the process and thread structures that the system will use and the inter-process
communication mechanisms used to coordinate their operation.

• Development viewpoint: This is the viewpoint which addresses concerns from the developers’ point
of view. It describes how the software development process is supported, e.g. what conventions
should be followed and how the artefact management will look like.

• Deployment viewpoint: Describes the environment into which the system will be deployed,
including capturing the dependencies the system has on its runtime environment. This view captures
the hardware environment that a system needs (primarily the processing nodes, network
interconnections, and disk storage facilities required), the technical environment requirements for
each element, and the mapping of the software elements to the runtime environment that will
execute them.

• Operational viewpoint: Describes how the system will be operated, administered, and supported
when it is running in its production environment. The aim of the Operational viewpoint is to identify
system-wide strategies for addressing the operational concerns of the system’s stakeholders and to
identify solutions that address these.

As CPSwarm is in the initial phase of the relevant system design, it has been chosen to focus on the context,
functional, information and deployment viewpoints to document the initial CPSwarm architecture design.

4.2 Stakeholders and Requirements

While CPS have been adopted more and more widely, in large-scale domains, the development
methodologies and the typical design procedures adopted for the CPS domain are not yet mature enough.
As result, the development of CPS tends to be complex, error-prone, and often requires a collection of tools
to be actually achieved.
CPSwarm tries to solve this problem by proposing a new science of system integration and tools to support
engineering of CPS swarms. CPSwarm tools will ease the development and integration of complex herds of
heterogeneous CPS that collaborate based on local policies and that exhibit a collective behavior capable of
solving complex, industrial-driven, real-world problems.

The CPSwarm project aims at defining a complete toolchain that enables the designer to: (a) set-up
collaborative autonomous CPS; (b) test the swarm performance with respect to the design goal; and (c)
massively deploy solutions towards “reconfigurable” CPS devices. Model-centric design and predictive
engineering are the pillars of the project, enabling definition, composition, verification, and simulation of
collaborative, autonomous CPS while accounting for various dynamics, constraints, and for safety,
performance, and cost efficiency issues. Figure 5 shows the original concept of such a system from the
Document of Action:

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 24 of 73

Figure 5 - CPSwarm conceptual architecture diagram

To guide the design and the implementation of the CPSwarm system, stakeholders, scenario and
requirements have been identified in D2.3 based on the conceptual diagram above. This section provides a
brief summary of the D2.3 outcomes, which are fundamental to the description of the architectural choices
depicted in subsequent sections.

4.2.1 Stakeholders

As part of the CPSwarm WP2 activities, multiple stakeholders of the CPSwarm system were identified. These
users include several categories of people having interests in such a system and that are expected to interact
both directly or indirectly with the CPSwarm toolset. The most important roles identified in this activity, and
the relative responsibilities, are described in Table 4. A more detailed description of these roles can be found
in D2.1. In particular, the interactions between stakeholders are described in D2.1, section 6.2.1
(Communication Flow between Stakeholders).

Table 4. Stakeholders of the CPSwarm System (extracted from D2.1)

Stakeholder Description

Workbench Engineer A person, group or an organization responsible for
the development and maintenance of the workbench

Mission Planner

A person responsible for planning the mission. The
mission includes:

• Problem definition
• Approach to solve the problem
• Environment description
• Mission parameters
• Mission success condition

Swarm Designer A person responsible for designing the swarm based
on the mission defined by the mission planner. The

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 25 of 73

swarm designer analyses the given problem and
designs the structure and behavior of the swarm
accordingly.

Domain Expert

A person, group or an organization who is an expert
of the problem domain. He is responsible for
providing expert advice about the domain e.g. rules,
regulations, limitations etc.

Security Expert
A person, group or an organization responsible for
providing expertise on safety and security of the
swarm.

Swarm Modeler

A person who constructs the model of the swarm.
This model is the visual representation of the
structure and behavior of the swarm specified by the
swarm designer.

Algorithm Optimization and Simulation Expert

A person or group who provides the expertise
regarding the swarm algorithm. He decides the
aptness of a certain algorithm given a specific swarm
problem.

Swarm Developer
A person or a group responsible for adding logic to
the generated code. This code is later on deployed on
each component of the swarm.

Deployer A person or group responsible for deploying the code
of the swarm.

Swarm Commander/Operator
A person with the command control in his hand. He is
responsible for directly manipulating the components
of the swarm.

4.2.2 Requirements

According to the requirements emerging from discussions and interviews with the different stakeholders,
multiple technical constraints were gathered and analyzed in D2.3. As first step in the architectural design,
such technical constraints guided the definition and identification of the main CPSwarm components. They
encompass:

Model Library: A library collecting reusable CPS models, swarm behavior algorithms, security guidelines etc.
It enables high reusability and interoperability of core functions adopted in swarm development.

Modelling Tool: The modelling tool is a graphical interface offering functions to model the swarm structure,
behavior, environment and other necessary parameters. The modelling tool provides an easy way for swarm
experts to design a swarm without having profound expertise in programming and/or hardware specific
knowledge.

Optimization Tool: Due to the complexity of swarm behaviors, in many cases it is very difficult, if not
impossible, to define the exact algorithm to be adopted for each individual member of a swarm. For this
reason, an optimization tool is envisioned to exploit methods based on Darwinian evolution to optimize the
algorithm automatically, according to the configuration given by users.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 26 of 73

Optimization Simulator: In order to evaluate an algorithm, the Optimization Tool needs an Optimization
Simulator to evaluate the performance a swarm population within a “controlled” environment. Thanks to the
availability of the Optimization Simulator, different generations of algorithms proposed by the Optimization
Tool are ranked and optimized across multiple simulations, on the basis of achieved performances.

Code Generator: A swarm typically consists of multiple heterogeneous devices. To ease the process of
deploying to devices based on different robotics platform, a code generator is envisioned to generate
platform specific code from the optimized algorithm prepared by the Optimization Tool.

Deployment Tool: To minimize repetitive effort in deploying to multiple targets, a Deployment Tool is
envisioned to automate the deployment process.

Hardware Abstraction Layer (HAL): In order to enhance the reusability of generated algorithms, it is
necessary to have an abstraction layer which hides the hardware specific details of target devices and
provides an interface for code deployment.

Monitoring Tool: After the deployment phase, a monitoring and configuration framework is necessary to
monitor the current status of the swarm, as well as to send reconfiguration commands to modify the swarm
behaviour, e.g., for re-purposing part of the swarm individuals.

Translator: It is the component responsible for translating the input/output of Optimization Tool into a
format understandable by Optimization Simulator.

The respective technical requirements were specified in D2.3, which for the sake of simplicity are not
repeated here. The high-level Data flows between these components were also identified in D2.3. It is
illustrated in Figure 6. The architecture of the CPSwarm system is based on the above defined components
and the specified data flow.

Figure 6 - Data flow between workbench components (extracted from D2.3)

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 27 of 73

It is worth mentioning that the above specified components and data flow represent a high-level logical
structure of the system. During architecture design, naming adjustments were made to components in order
to better describe them in technical and functional perspective. The table below summarizes these changes
and the reasoning behind.

Table 5 - Mapping between components specified in D2.3 and those in architecture design

Component
name in D2.3

Component name in
architecture design Reasons for change

Monitoring Tool Monitoring and Configuration
Framework

To emphasize that the component consists of sub-
components to fulfill both monitoring and configuring
functionalities

Hardware
Abstraction Layer
(HAL)

Runtime Environment

To emphasize that it consists of a stack of sub-
components which fulfill multiple functionalities, such as
program update, real-time data communication and
hardware abstraction

Translator Optimization Simulator
Wrapper

To emphasize that the component acts as an
intermediary layer between external simulators and
CPSwarm components, and enables high modularity
and extensibility.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 28 of 73

4.3 Context View

As a first step of the architecture design, a context view is developed to highlight the interaction between the
CPSwarm system, and the external actors, and systems. Given the stakeholders and requirements mentioned
in the previous section, the context diagram is depicted in the following Figure 7.

Figure 7 - CPSwarm system context diagram

The single software components of the CPSwarm system are grouped into three logical sub-systems:

The CPSwarm Workbench: a toolset including the Modelling Library, the Modelling Tool, the Optimization
Tool, the Optimization Simulator, the Code Generator, as well as the Deployment Tool. It provides an
integrated solution for swarm development from the modelling/design to the deployment phase. As shown
in Figure 7, the CPSwarm Workbench is the major interaction point between external users and the CPSwarm
system.

The CPSwarm Runtime Environment is based on the CPSwarm abstraction layer which provides a uniform
API for algorithms generated from the CPSwarm Workbench. It enables reusability of algorithms as well as
interoperability of heterogeneous devices. This is the interaction point between the external CPS devices and
the CPSwarm system.

The CPSwarm Monitoring and Configuration Framework solves the problem of real-time monitoring and
configuration of swarms during operation. It interacts mainly with Swarm Commander or Swarm Operator.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 29 of 73

4.4 Functional View

4.4.1 High-level functional view

The CPSwarm architecture specification adopts a component-based architectural style where the system
functions are provided by a set of well-defined, self-contained, modules named “components”. Components
talk to each other through well-defined interfaces, which make them decoupled from each other. With such
architecture style, maximum flexibility and extensibility could be achieved, since the system is not bound by
certain component implementations. Instead, components could be easily replaced with new ones, as long as
they share the same interface. For example, different simulators may be required to optimize the algorithm in
different aspects. In this case, there is no need to change the whole CPSwarm system. Instead, only the
component Optimization Simulator needs to be replaced with the desired simulator. In summary, a plug-in
oriented architecture is being promoted within CPSwarm project and will be further developed within the
updated versions of the architecture specification.

From a functional standpoint, the components participating in the overall system architecture are logically
grouped into three main blocks: the CPSwarm Workbench, the CPSwarm Deployment Toolchain and the
CPSwarm Runtime Environment (see Figure 8):

• The CPSwarm Workbench supports the core functions for modelling, optimizing, simulating and
deploying swarms of CPS;

• The CPSwarm Runtime environment supports easier deployment on real-world platforms, providing
functions and APIs designed to decouple the CPS business logic (the algorithms) from the CPS
infrastructure (hardware and operating-system, for example);

• The CPSwarm Monitoring and Configuration framework, which groups components, located at the
CPS side, that enable remote monitoring of the CPS operations and remote configuration of tunable
parameters of designed algorithms.

It is worth mentioning that while the design process aimed to define a generic architecture based on the
requirements collected in WP2, in this initial version, the focus has been on the adoption of “Evolutionary
Optimization” approaches (see section 3.4.1.2) to generate swarm algorithms. This means that swarm
algorithms candidates are developed using evolutionary principle. Each swarm algorithm candidate is tested
in simulator and evaluated according to its performance. Candidates with good performance will be chosen
to evolve until an optimized solution is found.

The following paragraphs better detail the three CPSwarm main blocks, providing insights on their inner
organization, on the foreseen sub-components and on the interactions occurring both at component and at
package level. The functionality of each component will be further introduced in the following sections.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 30 of 73

Figure 8 - Overview of components in CPSwarm system

4.4.2 Design Environment

 Modelling Tool 4.4.2.1

The Modelling tool provides a graphical editor (GUI) for the CPSwarm models. This GUI allows users to edit
the models with a set of languages specific for the CPS domain, as defined in deliverable D5.1.

Figure 9 - Functional structure model of Modelling tool

The Modelling tools architecture, depicted in Figure 9, may be decomposed into three components following
the Model-View-Controller design pattern. The representation layer is depicted as the GUI component. The

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 31 of 73

data layer is represented by the ModelRepository component for the model. The control layer incorporates
the Module(s) component(s) deployed inside each CPSwarm project. Each type of component is described in
the following sections.

Graphical User Interface (GUI) component
The GUI is the front-end which enables an intuitive and friendly ergonomics for CPSwarm model editing.

Figure 10 - Overview of Modelling tool view

Figure 10 shows an example of the CPSwarm Modelling tool GUI where the following elements are
highlighted:

• The Model Explorer is used to browse the model, to create/delete model elements and diagrams and
to select model elements for editing.

• The Diagram View is used to edit diagrams.
• The Diagram Palette contains buttons which provide access to model element creation commands.

Modules can configure and extend this palette to create specific environment in which only relevant
element (and not all) can be created.

• The Module Views (one per Module component deployed in the project) are used to view and to edit
domain specific properties of an element selected in the Model Explorer or Diagram Views.

Module(s) component(s)
These components act on both Layout component and model repository component. They are notified of
user interactions with the GUI and make corresponding calls to the GUI and to the ModelRepository
components to reflect operations on the model. Modules have access to the GUI. They can create specific
properties views, element and diagram creation contextual menus, property view tabs, can customize
diagram palettes and implement constraints for specific UML Profiles. In addition, the modules can access the
model repository at runtime via to query or modify the model programmatically. In addition, modules may
reuse different services exposed by other modules

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 32 of 73

ModelRepository component
The local model repository layer is a runtime data model layer that manages the model elements and also
notifies the GUI and modules about the changes made. Modules have an easy access to the model repository
that allows querying and modification of the model.

 Modelling Library 4.4.2.2

The Modelling Library’s aim is storing and providing reusable parts of models. These reusable parts are
sorted by category inside the library to facilitate their usage. Three kinds of artefacts have currently been
identified as part of the CPSwarm modelling library:

• Agent;
• Environment;
• Goal.

Agent
These artefacts represent one or many individuals involved in a given swarm. Two kinds of agents have been
identified:

• Regular Agents: These individuals act to fulfil a goal modeled by a cost-function, inside a given
environment. Their communication can be centralized or peer to peer.

• Malicious Agents: These parts of models will subvert the operation of the swarm by acting against
its interests. Possible malicious behaviors that can be modelled include:

o Not performing the assigned task;
o Reporting false data;
o Causing physical damage to other members of the swarm;
o Forwarding information to third parties.

Modelling the fact that the malicious behavior is spread between members of the swarm will also be
considered.

Environment
This part of a CPSwarm model represents the field or environment in which the swarm will be involved. By
simulating the swarm behavior in different fields (with different kind of constraint as size, obstacle or grounds
for example), it will allow to test the swarm robustness against possible changes of the external conditions.

Goal
To evaluate the resulting behavior of a modelled swarm, one or many criteria have to be defined. Such
criteria, called goal or cost-function, are computed exploiting the results from one or multiple simulation(s). A
lot of criteria are possible, including:

• Time spent for achieving a given goal;
• Accuracy;
• Security;
• Robustness;
• Power consumption.

Each simulation of a swarm configuration will provide a result for each criterion. Then a ranking method, such
as Pareto front, will be use to highlight the best swarm configuration.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 33 of 73

4.4.3 Algorithm Optimization Environment

 Optimization Tool 4.4.3.1

The Optimization Tool optimizes a control algorithm for an agent. It starts with a generic representation of a
control algorithm and searches for a viable solution using a heuristic search algorithm. The resulting control
algorithm is then deployed in a CPS. The control algorithm needs to be evolvable, i.e. modifiable by mutation
and recombination. An example for such a representation is an Artificial Neural Network (ANN). To apply the
iterative heuristic search to find an optimized configuration of the controller for a CPS, an optimization
measure, called fitness needs to be defined for a given problem scenario. A fourth component takes care of
evaluating a pool of possible algorithm candidates and provides a ranking for the evolutionary algorithm.

The result is a controller that implements local interaction rules that lead to the desired global behavior of
the system. The controller can be evaluated with the Optimization Simulator by testing it in a reference
scenario or by performing a statistically significant number of simulations on a given scale of parameters
under predefined conditions.

The Optimization Tool uses a modular approach, where the distinct steps of evolutionary design are split into
different components (see Figure 11).

Figure 11 - Optimization Tool

Problem

The problem is defined by agents, environment, and the goal to be achieved. The structure and description
of these three components are provided by the Modelling Tool. The problem is responsible for reading the
optimization parameters and providing them to the optimization simulator, setting up and running the
simulation via the simulator API, and finally retrieving the fitness score of every candidate solution. It uses an
interface to connect with the optimization simulator.

• Reading the optimization parameters: Certain parameters are predefined by the modeling tool
whereas others are left open to be fine-tuned during the optimization phase. The parameters are
read from the configuration file to set up the simulation. The open parameters have a default value
defined by the modeling tool. They are required as the swarm of CPSs might act in ways unforeseen
by the modeler.

• Setting up the simulation: A simple problem can contain also its simulation code. However, for most
cases involving a physical environment, there will be an external simulation used, which is interfaced
by the Optimization Tool.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 34 of 73

• Running the simulation: Each representation that has been evolved with evolutionary operators is
evaluated through simulation regarding the fitness function. This is achieved with the optimization
simulator. For introspection, the simulation can also be run using a GUI.

• Calculating the fitness score of every candidate solution: Using the fitness function defined by the
modeling tool, the fitness score is calculated based on the data returned from the optimization
simulator.

Candidate Representation
The candidate representation models the algorithm governing the behavior of an agent. Typically, there are
multiple instances created, which are then treated as different candidates for the best solution, hence the
name. The candidate representation is a generic structure which is evolvable, i.e. supporting mutation and
recombination. Since the representation does not depend on the problem, it can be chosen from a library of
pre-defined representations. The Optimization Tool supports several representations, for example a feed-
forward ANN with a hidden layer, a fully meshed ANN with several hidden neurons or a fully meshed ANN
implementing Hebbian learning.

Optimization Method
The optimization method performs a search algorithm that looks for the candidate representation that yields
the highest fitness as defined in the problem description. It uses the genetic operators defined in the
candidate representation to create new candidates in each generation to replace the worst performing
candidates of the population. Through iterative heuristic search, it gradually obtains candidates with better
performance. The optimization method can be applied independently of Problem and Candidate
Representation, hence it can be chosen from a library of pre-defined methods. For this, the Optimization Tool
provides different evolutionary algorithm and a random search approach.

Ranking Algorithm
The ranking algorithm evaluates the candidate representations and provides a ranking based on their fitness
values. This functionality is required by every optimization method. Ranking algorithms differ in the way how
they compare solutions. The particular algorithm can be chosen from a library of pre-defined ranking
algorithms.

The Optimization Tool’s GUI simplifies the design process and offers statistics and graph generation for easy
evaluation of the chosen design. The main purpose of the Optimization Tool is to support the optimization
process by guiding the end user through the individual steps of the evolutionary design. Such steps might
require coding work by the software developer to implement the modeled details.

As illustrated in Figure 8, the Optimization Tool provides three APIs:

Optimization Tool API
The Optimization Tool API supports the generic implementation of new Problems, Candidate Representation,
Optimization Methods or Ranking algorithms. When developing an algorithm for a CPS, the API for
implementing a new Problem are used.

Simulator API
The Optimization Tool communicates with the Optimization Simulator through a Simulator API. There are
two data flows between them:

• Initialization and start of a simulation: this is controlled from the Optimization Tool.
• Continuous exchange of sensor inputs and actuator outputs: Here control goes back and forth

between Optimization Tool and simulator. This is referred to as the real-time data exchange in
Section 4.5. If the initialization also transfers the algorithm to be evaluated the real-time exchange
can be avoided at the cost of a longer initialization.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 35 of 73

• Fitness feedback from the simulation: The fitness is calculated by the Optimization Simulator and
submitted to Optimization Tool. A possible implementation could be to derive the fitness by
analyzing a comprehensive log file of the simulation.

Algorithm Deployment API
The Algorithm Deployment API allows providing the output of the Optimization Tool for the Deployment
Toolchain. An evolved algorithm will be provided as source code (possibly in a less complex subset of C) that
is independent of the used representation. The deployment tool will then further process the algorithm.

 Optimization Simulator 4.4.3.2

The Optimization Simulator is used to evaluate the performance of a generated controller algorithm/module.
At each generation of the evolutionary optimization, the Optimization Simulator executes the current
controller in a predefined environment. The result of the simulation is exploited to compute a fitness score,
which allows the Optimization Tool to further optimize the controller. Figure 12 shows the structure of the
Optimization Simulator.

Figure 12 - Optimization Simulator

Depending on the problem to be solved, different external simulators can be exploited, such as ROS Stage
for 2D problem and Gazebo for high fidelity 3D problem. To achieve high modularity and extensibility, a
wrapper for the external simulator is necessary to serve as an intermediary communication layer between the
external simulator and other components in CPSwarm system. This wrapper on one hand conforms to the
Simulator API and Simulator, on the other hand communicate with the external simulator in use. In case a
new simulator is required, only the wrapper component needs to be modified. As illustrated in Figure 8, the
Optimization Simulator is surrounded by two APIs: Simulator API (described in section 4.4.3.1) and Simulator
Configuration API:

Simulator Configuration API
The Modelling Tool provides different kinds of information from the models to the Optimization Simulator
via the Simulator Configuration API. This includes setting up the environment and the agents. The
environment setup requires a description of the surroundings in sufficient detail. E.g., for ground robots, a
floorplan and some configuration parameters would be sufficient. The agent setup consists of the agents’
physical properties such as size, position, and sensors/actuators but also of its behavior. The Optimization
Simulator needs to be fed also details on the fitness function so that the required performance measures are
recorded during a simulation.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 36 of 73

4.4.4 Bulk Deployment Toolchain

The Deployment Toolchain is responsible for two tasks: the generation of platform-specific source code and
the deployment of code onto designated runtime environments.

The CPSwarm project aims at creating a workbench that integrates with common CPS platforms with a
varying degree of flexibility. Typically, swarms of CPS are based on different open-source or proprietary
platforms. These include the Robot Operating System (ROS) frameworks, pure Linux systems, and closed
educational or commercial platforms with limited functionalities. The component belonging to the bulk
deployment toolchains has been designed with extensibility in mind. This will enable easier integration of
other CPS platforms in future iterations of the project and/or will support extensions by third party
developers.

 Code Generator 4.4.4.1

Algorithms designed and optimized through the CPSwarm components located at the higher logic-levels of
the CPSwarm Workbench will finally be deployed on real-world CPS systems, e.g., robotic platforms.
Optimized algorithms cannot be directly deployed on a target CPS as, on one hand, they are developed and
optimized to be portable across platforms, and on the other hand, they are typically evolved in a behavior /
swarm-centric manner, with less focus on platform-related details such as event delivery subsystems, sensor
communication interfaces, etc. The glue layer between such high-level algorithm definitions (e.g., provided in
a C-like syntax) and the actual code running on real CPS is partly provided by the abstraction libraries
available on the target CPS platform (see the CPSwarm Runtime Environment) and partly generated by the
CPSwarm Code Generator. More specifically, the CPSwarm Code Generator is responsible to generate
executable code for the target CPS platform selected through the Deployment Toolchain Configuration APIs.
Such executable code leverages on the functions and libraries part of the CPSwarm Abstraction Layer and
performs the needed generation, translation and code-wiring tasks. These activities may radically vary
depending on the target language; however, exploited Abstraction Layer APIs are equivalent between the
different supported platforms, thus easing the overall code generation process.

Several code generation and code-wiring patterns are applied by the CPSwarm Code Generator depending
on the target CPS platform and the target programming language (e.g., C++ vs Python). Currently two main
generation patterns are foreseen, respectively named “template-based” and “programmatic”.

The template-based generation pattern applies to all the cases in which simple translation between the
high-level algorithm specification and the target runtime environment is possible. Among these cases, it is
for example possible citing the case of simple solutions where the needed glue code can be simply
parametrized with respect to the initial algorithm definition. In other words, template-based generation
applies whenever it is possible to define a simple set of target-templates to be filled with data extracted from
the algorithm specification. Finite State Machine controllers (see Figure 13), for example, are easily handled
through such a pattern (see Figure 14 for an applicable generation template).

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 37 of 73

Figure 13 - Sample Finite State Machine specification.

Figure 14 - Excerpt of template for template-based generation pattern of a state machine in ROS.

On the other hand, more complex algorithms specifications are sometimes difficult to handle with template-
based generation. Cases involving many data structures, utility functions and specific implementations that
need to be tailored for the input algorithm and for the given configuration data are seldom addressable by a
“fixed”, parametrized template.

In these cases, programmatic generation is much more suited, although it implies a stricter binding to the
algorithm specification syntax and semantics. Such a stricter binding is traded-off by the flexibility of the
generation pattern, which can in principle deal with all possible algorithms described using a given formal
syntax.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 38 of 73

To better understand the subtle difference between template-based generation and programmatic
generation the following comparison might be useful. While template-based generation works in way similar
to XSLT stylesheets, which permit to convert a given XML syntax to another one, using a “fixed” stylesheet;
programmatic generation is like DSL interpretation: given a well-known domain-specific language, the code
generation tool “compiles” an executable (or interpretable) set of code units. Every valid combination of the
DSL directives will generate a valid (runnable or interpretable) set of code units.

From a functional standpoint, the CPSwarm Code generator takes an algorithm specification (through the
Algorithm APIs) and a target platform specification as input (through the Deployment Toolchain
Configuration APIs) and generates a software bundle ready to be deployed (and compiled / interpreted) on
the target CPS. Its main components (not yet fully specified) include:

• A library of code-templates
• A library of DSL compilers
• The code generator core, which applies either a compiler or a template to generate code to be

deployed
• The code generator bundler which “bundles” generated code units into a deployable entity (e.g., a

python module with the corresponding requirements specification).
Figure 15 provides a preliminary architecture for the CPSwarm Code Generator while Figure 16 provides a
very high level UML activity diagram describing the code generator behavior.

Figure 15 - Code Generator: preliminary architecture.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 39 of 73

Figure 16 - High-level activity diagram describing the CPSwarm Code Generator behavior.

 Deployment Tool 4.4.4.2

After the code is successfully generated, it must be deployed on different targets. To ease the efforts to
execute and manage the deployment to a group of heterogeneous devices, the Deployment Tool automates
the process according to the configuration provided by the system users. The initial design of the
Deployment Tool offers an Over-the-air (OTA) update mechanism to deliver software to swarm members on-
the-go and at large scale. How the CPSwarm system benefits from the OTA approach to overcome
deployment scalability concerns is discussed in Section 6.2.

• Over-the-air (OTA) update: A publish/subscribe update strategy in which the new update
(deployable code) is published to an “update-channel”. All swarm members subscribing to this
channel will be notified about the update and receive necessary instructions on how and when to
execute it. While the publish update, strategy is preferred for scalability reason, it requires the swarm
member to have the ability to subscribe to OTA events and perform updates during the runtime.
More detailed description can be found in section 4.4.6.2.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 40 of 73

Figure 17 shows subcomponents of the Deployment Tool:

Figure 17 - Deployment Tool: preliminary architecture.

The Deployment Controller is responsible for (1) receiving deployable codes from the exposed interface
and (2) responding to service update requests. This component ensures a request for updates to a target
machine is responded with correct software distribution and version.

The OTA Update Server is in charge of (1) informing target machines when there is an update and (2)
scheduling when the update should be downloaded by the target. Target machines periodically perform
polling on the channel exposed by the OTA Update Server. After successful authentication and authorization,
the server negotiates with Deployment Controller to check whether an update is available for this particular
target. If an update is available, the server schedules a suitable time for this target, depending on the priority
of the update and the load on the server. The target is then responded with the suitable download time.
Below is an example of how an OTA Update request is performed by a target machine (For simplicity,
Authorization headers are omitted):

GET /status
Response:
Location: /update?token=YWJjZGVmMTIzNDU2
{

“status” : “security”,
“scheduled_time”: “2017-07-18T08:56:35Z”

}

GET /update?token=YWJjZGVmMTIzNDU2
Response:
{
 “compressed_size”: 743,
 “method”: “gzip”,
 “uncompressed_size”: 5410,
 “data”: << array of of bytes >>
}

Depending on the kind of update (i.e. batch or individual), the OTA Update Server may cache requests so
that the load on the Deployment Controller is reduced. The OTA Update Server itself can be replicated and
distributed for load balancing and scalability.

Exposed Interfaces
The Deployment Tool requires the generated code as well as deployment configuration as input. As output, it
provides an API for update requests from swarm members. As a result, the Deployment Tool provides the
following APIs:

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 41 of 73

• Deployment Tool API: The provided interface allowing submission of generated code from Code
Generator as well as deployment configuration from the CPSwarm Modelling Tool.

• OTA Update API: The provided update API, with one endpoint for getting status of updates and
another endpoint for getting the update when it is available.

4.4.5 Monitoring and Configuration Framework

The Monitoring and Configuration Framework is responsible for the runtime configuration and
reconfiguration of single CPS and multiple CPSs (CPS swarms), as well as for monitoring the critical system
and mission parameters. The framework takes advantage of existing protocols for system configuration and
monitoring (such as e.g., NETCONF from the field of network management). In addition to protocols for
communication between the Monitoring and Configuration Framework and the runtime system, appropriate
modelling of the data to be configured and monitored is an important part. More details on related data
modelling is given in Section 4.5.1.

The high level architecture of the Monitoring and Configuration Framework is shown in Figure 18. It consists
of the Configuration and Monitoring UI, Configuration and Monitoring Controller and the clients for
monitoring and configuration. Clients are responsible for low-level delivery of configuration and monitoring
data and they communicate with the corresponding servers integrated with the runtime environment. For
example, Monitoring Client subscribes to the Monitoring Server for the particular data to be monitored and
Monitoring Server publishes the current values of this data (periodically or event triggered). Monitoring
server will contain the specification of the data that can be published (including data structures, publishing
frequency, etc.). Configuration and Monitoring Controller manages monitoring and configuration based on
specifications (e.g., exchanged with the CPSwarm Workbench). User Interface components enable the user to
input the monitoring and configuration specifications and to view the monitored data.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 42 of 73

CPSWarm Monitoring and Configuration Framework

<<component>>
CPSwarm Monitoring

Connector

<<component>>
Configuration Server

<<component>>
Monitoring Client

<<component>>
Abstraction Layer

<<component>>
Configuration and Monitoring UI

<<component>>
Configuration Client

<<component>>
Configuration and Monitoring Controller

Pu
bl

ish
/S

ub
sc

rib
e

M
on

ito
rin

g
AP

I

Co
nf

ig
ur

at
io

n
AP

I

Monitoring
and Configuration

API

Figure 18 - Functional structure model of Monitoring and Configuration Framework

4.4.6 Runtime Environment

CPS designed and programmed with CPSwarm exploit the so-called CPSwarm Runtime Environment
(CPSwarm RTE, see Figure 19) to support execution of generated swarm algorithms, to provide on-line
update and re-programming capabilities and to support remote telemetry and data monitoring. These main
functions are respectively provided by: the (a) CPSwarm Abstraction Layer, (b) the CPSwarm Update System
and (c) the CPSwarm Telemetry components.
Following subsections better detail the architecture and the design choices / assumptions underlying each of
these components.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 43 of 73

Figure 19 - The CPSwarm Runtime Environment.

 Abstraction Layer 4.4.6.1

To ease the process of generating code to be deployed on target CPS, the CPSwarm project defines a so-
called CPS abstraction layer whose purpose is to decouple the implementation of swarm algorithms from
platform / system-specific function calls and primitives. The CPSwarm abstraction layer is composed by a set
of platform-specific libraries that provide a common, high-level API that enables generated programs to
uniformly interact with concrete CPS functions and subsystems. Depending on the CPS nature and operating
environment the abstraction layer might be implemented as shared library, as adaptation middleware and so
on. Several different implementations are foreseen mainly including the actual platforms considered by the
project: STEM educational robots, ROS-powered drones and rovers, and automotive fog-nodes.

It is important to notice that depending on the application use case the abstraction layer might be realized as
an “active” component of the architecture (i.e., as a service) or as a “passive” library to be included and
exploited by generated programs. The overall internal architecture of the abstraction layer is depicted in
Figure 20 and the actual “thickness” of the relative implementations depends on the target runtime.

Figure 20 - The CPSwarm abstraction layer.

As an example, for ROS platforms, the CPSwarm abstraction layer will likely be very thin, by exploiting the
abstraction and modelling efforts already carried by the ROS community. For STEM robots, on the other
hand, the layer implementation is foreseen to be more complex and articulated.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 44 of 73

 CPSwarm Update System 4.4.6.2

The CPSwarm Update System is designed to support the deployment process on the CPS side. It might work
in different modes depending on configuration provided through the initial deployment or through
subsequent updates.

Figure 21 - The CPSwarm Update System.

Among the functions provided by this component, it is worth citing: (a) the ability to compile any source-
code that was not compiled by the Deployment Toolchain (e.g., because of different hardware architectures),
(b) the ability to update the CPS software components by using the native platform tools, e.g., package
managers in Linux-based platforms, (c) the ability to autonomously check for the availability of updates and
(d) the capability to securely retrieve and check such updates before actually applying required modifications.
Moreover, the CPSwarm Update System supports a transaction-based behavior where any failure during the
update process is automatically reverted to the last working set-up. This, for example, enables to retain fully-
functional CPS even when update failures occur. Self-updating of the CPSwarm Update System is also
supported, thus enabling the CPS to be completely upgraded from remote.

While direct update initiated by the Deployment Toolchain is supported, it is nevertheless not advisable due
to scalability concerns. Whenever an entire population of CPS needs to be programmed, it is extremely
inconvenient to perform the process one-by-one. Instead, in CPSwarm, the suggested methodology requires
the Deployment Toolchain to “publish” a new update on the “update” channel of the population. Such an
update will be autonomously fetched by the swarm components thus enabling parallel deployment over all
platforms with no additional load on the Deployment Tool, which can therefore be exploited for other tasks
(see Figure 22).

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 45 of 73

Figure 22 - The CPSwarm update process.

Clearly all single-CPS updates must be finished before the swarm can start operating, therefore suitable
communication mechanisms should be provided to ensure that all members of a swarm are running the right
version of software.

 CPSwarm Telemetry 4.4.6.3

The CPSwarm Telemetry components, part of the CPSwarm RTE, enable delivery of sensor and telemetry data
to remote platforms, be they dedicated mission management platforms or generic IoT solutions.

Figure 23 - The CPSwarm Telemetry components.

The CPSwarm Telemetry is composed by 4 main components:

• A Telemetry Core able to interface the running algorithms and to hook into the CPS messaging
systems (when existing) to harvest all telemetry and/or sensory data treated at the CPS level;

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 46 of 73

• A CPSwarm Monitoring connector able to deliver data to, e.g., the CPSwarm Monitoring and
Configuration tool.

• A Configuration Endpoint exploited by the CPSwarm Monitoring and Configuration tool to deliver
CPS-specific configuration data

• A Configuration Manager, handling the delivery of received configuration data to the destination
components within the CPSwarm Runtime Environment

Data harvested by the Telemetry Core can be transferred to different backend platforms, at the same time,
and filtering policies may be applied to select the subset of information to deliver to each of the selected
platforms. By default, a CPSwarm RTE natively supports the CPSwarm monitoring framework, however other
connectors may be installed for enabling connectivity towards other platform, e.g., generic IoT platforms
such as Kaa28.

28 https://www.kaaproject.org

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 47 of 73

4.5 Information View

The information view describes the way that the system manipulates, manages, and distributes information.
Figure 24 shows the data flow between components in the CPSwarm system. Detailed documentation of
each flow’s data content, functionality and structure is given in section 4.5.1. A high-level overview of how
these flows interact with each other is presented in section 4.5.1

Figure 24 - Data flow of CPSwarm system

4.5.1 Data flow in CPSwarm System

In this section, the data flows within the CPSwarm system will be described to give readers a high-level
overview of the workflow of the system. Figure 24 shows the data flows between components in the
CPSwarm system, which is derived from the data flow identified in D2.3 (Figure 6). The whole workflow could
be divided into different phases:

Modelling phase
During this phase, the swarm modeler/designer interacts with the system through the Modelling Tool to
model a swarm. The modeler/designer may create new models, or choose to import reusable models of CPS
from the Modelling Library. The imported data is represented by Flow 1 (Models) in Figure 24.

In a swarm model, the following configurations are specified by the modeler/designer:

• The Optimization Configuration, which includes the goal of the swarm, the fitness function as well as
necessary parameters for the Optimization Tool. These configurations will be passed to the
Optimization Tool to prepare for the upcoming algorithm optimization phase. This is represented by
the Data flow 2 in Figure 24.

• The Simulation Configuration, which provides necessary configuration to setup the Optimization
Simulator to be used by the Optimization Tool (Flow 3, Simulation Configuration).

• The Deployment Configuration (Flow 4, Deployment Configuration). This configuration specifies how
the optimized algorithm should be processed by the Code Generator.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 48 of 73

• The monitoring configuration, which provides necessary configuration setup for the monitoring and
configuration tool (Flow 5, Monitoring Configuration).

Algorithm Optimization Phase
After the modelling phase, the algorithm optimization phase will be carried out, in which algorithms will be
optimized using e.g. evolutionary method across multiple iterations. In each iteration, algorithm agents
residing in Optimization Tool will be tested in in the Optimization Simulator. During the simulation, the
algorithm agents act as the brain and gives command to the simulated devices in the Optimization Simulator.
In return, it gets simulated sensor signals from the simulator. The agents then react to these feedback and
gives new command accordingly. Flow 6 (Real-time Simulation Data) represents such real-time simulated
data exchange between the two components.

After one simulation is finished, the result is evaluated and a score representing how good the agents
performed is calculated according to the fitness function. This fitness score is then returned to the
Optimization Tool to help to rate the agents (Flow 7, Fitness Score). The returned fitness score marks the end
of one iteration. Multiple iterations will be carried out during the algorithm optimization phase to find the
optimized algorithm.

Deployment Phase
Following the algorithm optimization phase is the deployment phase, in which the generated algorithm is
deployed on target devices. The generated algorithm is first passed to the Code Generator inside the Bulk
Deployment Toolchain (Flow 8, Algorithm). The task of the Code Generator is to generate platform-specific
code according to deployment configuration from the algorithm. The generated code will then be passed to
the Deployment Tool for later deployment (Flow 9, Deployable Code).

The task of Deployment Tool is to deploy the generated code to target devices by publishing it to an update
channel (Flow 10, Deployable Code), just as described in section 4.4.6.2.

Operation Phase
After successful deployment, target devices can be started to run in operation mode. On one hand, target
devices will stream real-time data to the Monitoring and Configuration Tool, which reflects the current status
of the devices. Flow 11 (Real-time Swarm Data) represents this stream of data. On the other hand, the
Monitoring and Configuration Tool can also send commands to the swarm, reconfiguring its behavior. Flow
12 (Runtime Swarm Command) represents this flow of commands.

4.5.2 Data model in CPSwarm System

After the high-level introduction of data flow in the CPSwarm system, readers should now have an overall
idea of the information exchange between components. Based on this assumption, the detailed data model
of each data flow will be presented in this section to provide readers a deeper understanding of the
information flow within the system.
In this section, the detailed data model of each data flow will be presented.

 Flow 1 (Models): 4.5.2.1

Swarm models depict several aspects of a swarm including its behavior, its environment, its structure in terms
of involved drones, the structure and the behavior of each drone, the communication between the drones,
etc. Modelling all these aspects will be made on top of existing standards mentioned in section 3.3. The most
relevant standards will be used and enriched if necessary.
Until now two kinds of models are expected to be stored in the Modeling Library and retrieved by the
Modeling Tool (Flow 1):

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 49 of 73

• Structural models: To show the composition and classification of swarm structural element (drone,

sensor, etc.). The interface of each structural element and static connections between them will also
be modeled by using the structural modelling.

• Behavioral modelling: To highlight the inputs, outputs, aka data flow and conditions aka control
flow of the CPSwarm behavior.

Details of these models will be found in D5.2 Deliverable.

 Flow 2 (Optimization Configuration) 4.5.2.2

This flow transports the models of the Modelling Tool describing environment, agents, and the goal of the
optimization in terms of a fitness function. They are used to set up the optimization tool. This flow contains
two parts:

• Problem (including descriptions of goal, environment, and agent)
• Parameters (for configuring the optimization tool)

Problem: The problem contains everything that is necessary to test and evaluate a possible solution. This
functionality is used by the Optimization Tool to perform an automated search for a viable solution.

Figure 25 - Parameters for the Algorithm Optimization Framework

Parameters: This is a set of parameters that describe the setup of the optimization tool. They are passed
from the modeling tool to the optimization tool. These parameters include configuration, properties, and
requirements, see Figure 25.

The configuration parameters describe the problem that is modeled with a set of strings.
The properties are a set of parameters that are not fixed during the modeling phase but left open for the
algorithm optimization phase. However, these parameters have a default value set by the modeling tool.
These parameters are used to evaluate the algorithm with different setups. This is useful to achieve a
robust algorithm that works in different environments. There are no mandatory parameters. Exemplary
parameters in the properties section are:

• description of agents, e.g. cardinality, positioning, size
• description of environment, e.g. size, obstacles, POI

The requirements define important parameters for the evolutionary optimization process. These
parameters are:

• inputnumber: the number of inputs for the controller, i.e. the number of sensed inputs, each
input has the type of a single scalar value, but depending on the problem, the input signal could
also use only a part of the possible values

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 50 of 73

• outputnumber: the number of outputs of the controller, i.e. the number of actuator controls, each
output corresponds to a single scalar value, which might be interpreted further

• minimumCandidates: the minimum number of agents necessary to address the problem
• maximumCandidates: the maximum number of agents that can be used in the problem

 Flow 3 (Simulator Configuration) 4.5.2.3

The simulator configuration is used to set up the optimization simulator. It contains three parts:
• Environment
• Agent
• Fitness function

Environment: The environment description contains all details of the environment that are necessary for the
simulation to run. This includes the following parts:

o Floor plan of the underlying map: This floor plan is loaded by the simulator to display the
environment and to provide the environment to the agent’s sensors. This could be for example a
bitmap graphics for a 2D simulation.

o Environment description for the simulator: This is a configuration file for the simulator which includes
necessary parameters. These parameters are for example the path to the floor plan file, the resolution
of the floor plan, or the simulation speed.

o Environment description for the agent: The agent might require some a-priori information about the
environment. This could include the floor plan bitmap file or the location of certain points of interest.

Agent: Each agent is described by its physical properties such as size, starting position, sensors, and actuators
as well as by its behavior. Such properties are encoded into a simulator independent format, e.g., YAML, and
delivered to the CPSwarm Optimization Simulator tool. As an example, the following lines show a possible
definition of a range sensor derived from a generic sensor description:

define lidar ranger
(
 sensor
 (
 range [0.0 30.0]
 fov 270.25
 samples 1081
)
 color "black"
 size [0.05 0.05 0.1]
)

The agent behavior is described with functional code. This code is the core of the optimization simulator as it
defines how the sensors are read, how the actuators are used, and how the robot decides on its actions. The
behavior changes every time the simulator is executed with a different controller candidate by the
optimization tool.

Fitness function: The fitness function is used by the optimization tool to compute the fitness of a controller
candidate. In order to calculate the fitness, relevant simulation parameters need to be analyzed, either during
the simulation or by processing a simulation log after the simulation has finished.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 51 of 73

 Flow 4 (Deployment Configuration) 4.5.2.4

Data flowing from the CPSwarm Design Tool to the Deployment Toolchain (flow 4 in Figure 24) belongs to 3
different categories:

• code-generation directives
• bundling directives
• deployment configurations

 Code generation directives are couples of algorithm descriptions and target runtime identifications. They
provide the complete specification of a control algorithm using either a well-defined formalism or a DSL, and
the information needed to identify the target runtime for which the algorithm shall be “compiled”.

Figure 26 - Preliminary data-model of Code Generation directives.

Figure 26 reports a preliminary data model of code-generation directives. Each directive refers to a single
algorithm definition (e.g., expressed through a DSL) and identifies the set of runtimes for which runnable
code should be generated. This multiplicity allows code generation for multiple runtime platforms in a
“single” pass.

Bundling directives, identify the set of dependencies and functional blocks that need to be bundled together
with the generated algorithm to provide a fully working CPS code (see Figure 27). In a ROS-based platform,
for example, this information includes the set of ROS nodes that need to be installed for deploying the
generated code.

Figure 27 - Preliminary data-model of Bundling Directives.

The currently available specification29 defines a bundling directive as composed of a list of dependencies
(similarly to, for example, Linux package dependencies), and algorithm implementation and a bundling
format, e.g., Debian package, ROS module, etc.

Deployment configuration specifies the target platforms and/or the update channel to which the bundles to
be deployed shall be published. Such information is in principle independent from the generated code, which
does not need to be generated at deployment time.

29 Under refinement.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 52 of 73

Figure 28 - Preliminary data-model of Deployment configuration.

It includes the set of target platforms (single CPS instances) to which deploy the bundles. For each target two
main elements shall be specified:

• a bundle to deploy;
• a deployment channel to leverage on.

This flexibility in the specification allows, for example, the deployment of bundles to different, heterogeneous
CPS, in one step.

 Flow 5 (Monitoring Configuration) 4.5.2.5

The data model for Monitoring and Configuration will include the structure, syntax, and semantics of data to
be monitored and configured, as well as primitives to view and manipulate the data (e.g., in a form of defined
operations). With this data model, different configurations, e.g., for system start-up, shut-off, running, etc.,
are specified. The reuse of existing data models and data exchange notations such as YANG30 or JSON will be
promoted. Some of the necessary commands that the Configuration and Modeling Tool could send to the
single CPS or CPSwarm are: get-config to get the currently deployed configuration, edit-config to modify
some of the parameters of current configuration, get to read the concrete configuration values and status,
and hello to get the information about the capabilities of the CPS. Capabilities define what monitoring and
configuration features or mechanisms can be used.
Transactions for modifying or exchanging configurations must have ACID properties (also for the complete
Swarm): Atomicity (Transactions are indivisible, all-or-nothing); Consistency (Transactions are all-at-once and
there is no internal order inside a transaction); Independence (Parallel transactions do not interfere with each
other); Durability (Committed data remains in the system even in the case of a fail-over, power failure, restart,
etc.).

 Flow 6 (Simulation Real-time Exchange) 4.5.2.6

The simulation real-time exchange enables the Optimization Tool to use an external optimization simulator
for evaluating each controller candidate. Figure 29 depicts a data flow between Optimization Tool and
Optimization Simulator. The exchange is performed by a network interface that also allows to control the
optimization simulator. Each simulator requires a specific interface that considers the characteristics of the
corresponding simulator. The following steps describe a typical interaction between Optimization Tool and
Optimization Simulator:

1. Setting up the simulator: The simulator needs to be configured as the parameters have been chosen
by the optimization tool. These parameters include e.g. the number and placement of agents or

30 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)
https://tools.ietf.org/html/rfc6020

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 53 of 73

environment details. Also the network address of the optimization tool needs to be passed to the
simulator so it can return required information.

2. Starting the simulation: Once the setup has completed and the optimization tool is ready to evaluate
a candidate controller, the optimization tool issues a command to the simulator to start the
simulation.

3. Reading the sensor data: The simulator sends the sensor readings to the optimization tool.
4. Sending actuator commands: The optimization tool processes the sensor readings using its evolved

controller candidate. The resulting actuator commands are returned to the optimization simulator
which then executes these commands.

Steps 2 and 3 of this process are repeated until the optimization tool finishes the optimization process.
Further commands that need to be passed in this flow are:

• Stopping/pausing the simulation: To ensure that the simulator is completely controllable by the
optimization tool the stop and pause commands are required to interrupt the simulation process.

• Replay: For introspection purposes the optimization tool can be used to analyze a specific solution
that has been evolved. Therefore, an additional command is required that enables a visual mode
where the simulator displays a GUI showing the simulation progress.

 Flow 7 (Fitness Score) 4.5.2.7

The fitness score measures the performance of a controller in a single simulation run. The data for calculating
the fitness score could be based on a continuous monitoring function in the simulator or by processing log
files after the simulation run has finished. The flow of fitness score from optimization simulator is depicted in
Figure 29.

Figure 29 - Data flow within the optimization tool

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 54 of 73

 Flow 8 (Algorithm) 4.5.2.8

When the optimization tool finishes, the result is an algorithm that has a general format and can be passed
to the deployment toolchain for generating deployable code. The algorithm is expressed in source code to
be further processed by the deployment toolchain.

 Flow 9 (Deployable Code) 4.5.2.9

Code generated by the CPSwarm Code generator is typically compiled and bundled with required libraries
and made available to the deployment tool via a dedicated interface. Two main kinds of deployable code
data are currently envisioned depending on the target deployment platforms. When the target platform is
compatible with compilation accomplished at the code generator side (i.e., it has the same or a compatible
hardware architecture, or cross-compilers are available), the outcome of the code generation process is a
compiled code unit, e.g., an OS package for Linux-based CPS, which is transferred to the deployment tool to
be “delivered” over the right update channel. Instead, when compilation cannot occur beforehand, the data
flowing across the link between the code-generator and the deployment tool is composed of the generated
source code plus all the required dependencies, either packaged as a library bundle or as a requirements file.
Such data is complemented by a dedicated compilation script that can be exploited by the deployment tool
to trigger compilation once the generated code is uploaded to the target CPS.

 Flow 10 (Deployable Code) 4.5.2.10

Flow 10 (Deployable Code) represent the code that is transferred to target devices by the Deployment Tool.
The Deployment Tool does not change the generated code, but rather transfers the code in a form suitable
for the specific deployment strategy (i.e. OTA / Direct Deployment).

 Flow 11 (Swarm Real-time Data) 4.5.2.11

Once the code designed, generated and deployed through the CPSwarm Workbench has been deployed on
the individuals of a swarm of CPS, telemetry data, as well as data generated by CPS payloads (e.g., thermal
imaging, etc.) can be monitored through the CPSwarm Monitoring and Configuration Tool. CPSwarm-
enabled CPS have the possibility to either leverage the CPSwarm native monitoring infrastructure or they can
connect to generic IoT platforms, selected at deployment time.
Data exchanged between the swarm individuals and the Monitoring tool, natively exploits a
Publish/Subscribe interaction pattern to account the fact that:

1. Multiple listeners might need to receive telemetry or sensory data, on a dynamic subscription bases.
Publish/Subscribe natively support this requirement by decoupling event sources (i.e., the CPS) from
event consumers.

2. Data may be transferred opportunistically, depending on the actual connectivity and network
conditions. This prevents the adoption of any client-server-like interaction paradigm where the CPS
acts as server. Cases in which the CPS system plays the client role are possible, however they might
not be suited for high-frequency / high-cardinality data streams.

Publication of selected subsets of telemetry/sensory information to on-line IoT platforms through REST API
calls is supported, at least for low/medium frequency data streams. While depending on selected IoT
platforms, required data-formats might change, CPSwarm CPS natively provide sensory data encoded
according to the OGC Sensor Things API formalism.

In such a standard, an Observation is modelled as an act that produces a result whose value is an estimation
of a property of the observation target or FeatureOfInterest. An Observation instance is classified by its event
time (e.g., resultTime and phenomenonTime), FeatureOfInterest, ObservedProperty, and the procedure used
(often corresponding to a Sensor). Things are also modelled in the SensorThings API, together with the

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 55 of 73

historical set of their geographical positions. More specifically, in the Sensing profile, a Thing has Locations
and HistoricalLocations. It can also have multiple Datastreams associated. A Datastream is a collection of
Observations grouped by the same ObservedProperty and Sensor. An Observation is an event performed by a
Sensor that produces a result whose value is an estimate of an ObservedProperty of the FeatureOfInterest.
Following subsections better detail the single data model entries.

Figure 30 - The OGC Sensor Things API data model.

Thing
The OGC SensorThings API follows the ITU-T definition, i.e., regarding the Internet of Things, a Thing is an
object of the physical world (physical things) or the information world (virtual things) that is capable of being
identified and integrated into communication networks [30].

Location
The Location entity locates the Thing or the Things it is associated with. A Thing’s Location entity is defined as
the last known location of the Thing.

HistoricalLocation
A Thing’s HistoricalLocation entity set provides the current (i.e. last known) and previous locations of the
Thing with their time.

Datastream
A Datastream groups a collection of Observations and the Observations in a Datastream measure the same
ObservedProperty and are produced by the same Sensor.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 56 of 73

Sensor
A Sensor is an instrument that observes a property or phenomenon with the goal of producing an estimate of
the value of the property.

ObservedProperty
An ObservedProperty specifies the phenomenon of an Observation.

Observation
An Observation is an act of measuring or otherwise determining the value of a property (OGC and ISO
19156:2011).

FeatureOfInterest
An Observation results in a value being assigned to a phenomenon. The phenomenon is a property of a
feature, the latter being the FeatureOfInterest of the Observation (OGC and ISO 19156:2001). In the context of
the Internet of Things, many Observations’ FeatureOfInterest can be the Location of the Thing. For example,
the FeatureOfInterest of a wifi-connected thermostat can be the Location of the thermostat (i.e. the living
room where the thermostat is located in). In the case of remote sensing, the FeatureOfInterest can be the
geographical area or volume that is being sensed.

 Flow 12 (Swarm Runtime Command) 4.5.2.12

CPSwarm-programmed CPS can receive commands, e.g., to switch between pre-programmed behaviors,
and/or configuration parameters through the channel established by the monitoring tool, exploiting the
telemetry core of the runtime environment. Through this back-channel, two main kinds of data are delivered:
configuration data, typically encoded as a set of key-value pairs, e.g., encoded in YAML or JSON, and runtime
commands, typically triggered through dedicated calls, be they REST-based or exploiting a message-based
interaction paradigm that can leverage the telemetry publish/subscribe channel as transmission mean.
Currently, the set of allowed commands as well as the set of envisioned configuration parameters has still to
be refined, therefore a more precise specification of data exchanged at this level is not yet available.
Nevertheless, at the architectural level, the need for such a backward communication channel is duly
accounted: the next releases of the architecture specification will include a more detailed description of data
models, and APIs involved in the information flow between the monitoring tool and the CPSwarm RTE.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 57 of 73

4.6 Deployment View

The CPSwarm workbench consists of components with a variety of dependencies. Figure 31 shows the
network diagram of these components. This section describes the environment required for each component.

Figure 31 - Network diagram of CPSwarm component during the deployment.

The modelling tool is one main interaction point between the users and the CPSwarm system. It should be a
desktop application with graphical user interface to provide easy access for users. It is designed to be a local
application that runs on typical personal computers using common operating systems, such as Microsoft
Windows, Linux and/or macOS.

For the optimization, external simulators may be used to evaluate the performance of algorithms. Third-party
open-source simulation environments such as Gazebo31or Stage32 could be used for such purpose. To
address the scalability issues mentioned in Section 6, the CPSwarm system provides the possibility to run
multiple optimization simulators across a cluster of machines. For easy deployment and management of a
cluster of simulators, Docker could be used. Docker is a container technology that allows a developer to
package up an application with all the dependencies it needs into containers to isolate it from the host
environment33. In our case, each simulator will be packaged together with its software dependencies within a
Docker container. The containerized simulator then can be easily deployed and run on local machine, remote
server, or across a cluster of machines with the help of Docker Swarm application regardless of software
dependencies, as long as the machine supports Docker.

The monitoring and configuration framework is the center for swarm real-time data and runtime
configurations exchange. Thus, it must be exposed to both swarm members and monitoring clients.
CPSwarm allows the monitoring server to be deployed on either local machine or remote server, as long as

31 http://gazebosim.org/
32 http://playerstage.sourceforge.net/doc/stage-svn/
33 https://www.docker.com/

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 58 of 73

the machine is accessible by swarm members and monitoring clients. For easy deployment and management,
Docker container could be utilized to isolate the monitoring server from the running environment.

The CPS Runtime Environment (CPSwarm RTE) is an environment which is built upon the operation
environment of swarm members to support execution of generated swarm algorithm, to provide on-line
update and to support remote telemetry and data monitoring. The CPSwarm project aims at creating design
specifications and guidelines for such RTE so that it is extensible to fit on common robotic platform, such as
Robot Operating System (ROS), STEM-robots, etc. As a proof of concept, the focus will be on the
development of a RTE based on ROS. ROS is chosen because devices from DIGISKY and ROBOTNIK rely on
ROS to operate. Besides, ROS is also one of the most popular and widely used platforms for developing
robotic applications world-wide. A successful implementation of such RTE will very likely bring great impact
to the community of swarm robot developers.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 59 of 73

5 Security Perspective

The current state-of-the-art literature on the security of cyber-physical systems addresses a variety of issues,
such as the security of CPSs as industrial control systems [31], threat analysis based on physical-, network-
and application layer vulnerabilities in CPSs [32] or describing security challenges regarding swarm robotics
[33], etc. The CPSwarm project aims to contribute to this field of science by providing a general threat and
risk analysis of CPS security, followed by use-case specific threat and risk analyses. In the following sub-
sections an initial threat analysis is provided regarding the confidentiality, integrity and availability of the
CPSwarm system, followed by security best practices and countermeasure recommendations to address
these threats.

5.1 Security threat analysis

As in common threat analysis practice, this sub-section describes threats in the context of cyber-physical
systems through the main security objectives of Confidentiality, Integrity and Availability (CIA in short).
First, let’s define what these terms mean in the special case of a swarm and its agents:

• Confidentiality means preventing the disclosure of sensitive data collected or stored by the CPS to

unauthorized parties. Only authorized agents and operators should be able to see mission targets,
objectives and progress reports, as well as maps, camera recordings and other sensor data.

• Integrity refers to data or system information that cannot be modified without authorization. In case
of a swarm of robots, integrity means that such data should originate from authorized entities and
unauthorized third parties should not be able to tamper with it.

• Availability means that the system must be able to operate when needed. On the swarm level, it
focuses on the ability to complete the mission, while on the level of individual agents, it mostly
relates to the ability of the agent to act as a member of the swarm.

In Figure 32, a part of the threats identified are shown grouped into 3 categories based on whether they
compromise the Confidentiality, Integrity or Availability of the swarm.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 60 of 73

Figure 32 - Threats categorized by CIA

Concerning Confidentiality, one can possibly aim attacks on different components of a CPS. Ground

control stations are the computers/devices from which the operator gives commands to the CPS and these
devices can be compromised by viruses, malware, keyloggers or trojans. It is also possible to obtain
confidential information by hacking the CPS directly or compromising the communication link with the
operator by identity spoofing, hijacking or eavesdropping. In some cases, it is much easier to hack the human
in the loop (e.g. the Swarm Operator) by social engineering, bribes, or by using threats and violence; or a
compromise of confidentiality can simply happen by accident due to human error.

Integrity can be compromised by mistakes made by personnel or environmental effects resulting in

noise in signals and sensor recordings. Malicious attacks aimed against integrity can compromise the link
using malicious code or subroutine exploits, or the attacker can go on-site to jam signals, or to capture
packets, then edit and retransmit them.

Absence of availability can be a result of environmental effects - for instance extreme weather

conditions - or of malicious attacks, such as signal/sensor jamming, denial of service or distributed denial of
service attacks, either by exploiting vulnerabilities like buffer overflows, or by flooding, or by falsifying control
signals or control commands.

5.2 Countermeasures

Since agents in a swarm consist of many components with different possible vulnerabilities, it is important to
emphasize that a system is as secure as its weakest component. For purely economic reasons, an attacker will

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 61 of 73

always target the vulnerable component that can be exploited with the least effort [34]. Therefore, to ensure
the security of agents and swarms, a developer should make sure that there are no weak points.

Some of the threats mentioned above are unrelated to the swarm itself – such as social engineering, malware
and viruses. Risks associated with these threats could be reduced by training personnel and ensuring that all
operating system and third party software components are up to date on the agents’ and operators' systems,
and that the software security and secure software development methodologies described by Figure 33 have
been adopted. It is also important to ensure the integrity of the software running on the agents by digitally
signing all components, ensuring that software updates can only come from trusted parties and have not
been tampered with.

Feeding false information to software components, either through the sensors or through communication
channels between software and hardware components could endanger the learning ability and decision
making pertinence of the agents. It is a complex threat which could arise from man in the middle attacks,
malware, node impersonation, or by subverting sensors as depicted in Figure 32. Strong encryption and
authentication mechanisms would protect against man in the middle attacks and some of the consequences
of having false input fed to the systems. On the sensor side, sanity checks should be applied. The effect of
such an attack can be mitigated on the swarm level by monitoring the consistency of the data shared
between agents and by taking advantage of the different redundancies in case noise is detected in the
system.

Resource exhaustion can be a consequence of diverting the route of the agent or physically harming it, to
increase the power, fuel or other consumable usage of the agent until the resource eventually runs out.
Thinking about a drone with at most 30 minutes of battery time, the severity of this issue can be clearly seen.
Another possible denial of service attack is overloading the processing, memory or storage capacity of
individual members. To handle hardware failures of any kind, fault detection is a key feature and the first step
to corrective actions.

Fault tolerance is also a crucial feature to handle attacks against sensors, thus preventing miscommunication,
bad decisions and collisions in the swarm. Jamming could pose a serious security threat in swarm robotics
since it could disrupt multiple agents at the same time, even if they possess very sophisticated high-level
security mechanisms. A possible source of inspiration to look at is wireless sensor networks – several possible
countermeasures are proposed to defend against jamming attacks targeting such systems, like transmission
power regulation, DSSS modulation, frequency hopping, ultra-wideband signaling, etc. [35]

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 62 of 73

Figure 33 - Countermeasures to the CPSwarm system

To defend against attacks on communication channels, it is required for the swarm to have proper
cryptography and authentication mechanisms. The security of individual agents can be ensured by following
the best practices concerning system security. One straightforward defence is to encrypt all data streams
between any two agents or nodes, making eavesdropping and man-in-the middle attacks effectively
impossible. Cryptography depends on key-management, which is a difficult to implement correctly when
dealing with the mobile agents of a swarm. In a case study by Hansson [36] on the security of mobile ad hoc
networks, the authors mention that currently the only widely deployed solution for key management in this
scenario is the manual creation and distribution of keys. However, this method increases traceability and the
chance of misusing the keys, and implies that the keys are used for a relatively long time, which gives the
attacker more opportunities to crack the keys. Fast, on-site revocation of cryptographic keys would be crucial
in swarm robotics.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 63 of 73

The main difference between the countermeasures applicable to individual agents and swarms is that in a
system of multiple robots, it is possible to implement corrective measures depicted on Figure 33. For
instance, after an intruder has been detected, the swarm could collectively decide whether to avoid, disable
or remove it from the swarm, taking the pre-defined action depending on the mission safety requirements. If
an agent fails, either due to an attack or an accident, the swarm could reallocate the workload between the
remaining agents and continue the mission. To prevent an intruder from spying on the mission and from
obtaining sensitive information, the swarm could decide to revoke the rights assigned to compromised
members and re-authenticate between non-compromised members.

Even if all preventive controls presented on Figure 33 concerning personnel, software security, secure
software development, encryption, authentication, sanity checks and fault tolerant communications would be
implemented, the security aspects of the distinctive collective behaviour and autonomy of swarms would still
pose significant challenges. Protecting individual agents might prevent most cyber-attacks against the swarm
as a whole; however, the possible corrective actions in case of a successful attack still need to be thoroughly
investigated. New, different kinds of threats can arise depending on the many scenarios and environments a
swarm could encounter. The biggest challenge of security research in the field of swarm robotics is
developing intrusion detection and post-intrusion corrective techniques.

5.3 Security aspects in CPSwarm architecture design

Many of the countermeasures described in the previous section can and should be integrated into the
CPSwarm system in a way that it provides security by default to all swarms designed with the CPSwarm
system. While the overall security objectives of the swarm depend on the use case and the mission, all effort
must be undertaken to ensure that the system in general provides a solid foundation on which secure
applications can be built on. Listed below are some potential points to be noticed in designing the CPSwarm
system:

The Bulk Deployment Toolchain should help users securely push updates to swarm members. Infrastructure
to sign code (and on the target system, validate signatures) could make secure software updates work
without further user effort. Great care must be taken to ensure that the code generated here is not the
source of additional vulnerabilities, as the user is unlikely to audit the results of the automatic code
generation tools.

The Monitoring and Configuration Framework could collect data on the integrity of swarm members and on
the integrity of the swarm itself for auditing and early threat detection.

The Runtime Environment should provide a secure communication channel for swarm members, and ensure
that integrity requirements (like code signature verification) are enforced. The base platform on which the
runtime environment operates should also be configured to defend against common attacks – this includes
the correct configuration of system features like firewalls and privileges.

The Design Environment and the Algorithm Optimization Environment can also contribute to the overall
security of the system: by aiding the design and simulation of different threat vectors and environmental
disturbances, the behaviour of the swarm can be tested in and optimized for these edge cases.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 64 of 73

6 Scalability Perspective

Scalability and performance are of most importance in many ICT systems, no matter if they are used in
monolithic applications or in applications for fully-distributed systems. While the CPSwarm architecture
might appear as a relatively vertical solution with few or no scalability issues, there are several points in the
architecture which require a “design for scalability” approach. More specifically, the CPSwarm architecture
can be divided into two main subsystems, each having particular requirements in terms of performance and
scalability.

6.1 CPSwarm Workbench

The CPSwarm Workbench designed in this first version of the architecture specification is mainly a “single”
application used to model, simulate and optimize a population of CPS. While modeling can be considered as
a task that has typically low scalability requirements (and issues), optimization and simulation can be defined
as the two most demanding phases in terms of performance and parallel execution.
The CPSwarm Workbench relies on evolutionary optimization algorithms, which are designed to exploit
“natural evolution” mechanisms to explore the space of possible solutions for a given problem, with the
intent of finding the global optimum (or a nice approximation of it). This exploration is usually carried by
generating a set of candidate solutions and by evaluating such solutions against a performance metric
(fitness function). The best performing solutions gain the right to “survive” and are “propagated” to
subsequent generations through operators that mimic natural evolution (e.g., crossover and mutation in
genetic algorithms). At every iteration of the evolutionary algorithm, a new population is generated and its
candidates evaluated. Typically, the process will converge to a “good enough” solution, where the degree of
optimization depends on the “fitness function definition” and on the ability of the algorithm to avoid local
optima. It is easy to notice that the whole process requires several iterations (the number of generations
required by the algorithm to converge) and involves several candidate solutions at each generation.

In the CPSwarm case candidates are the controllers for each individual agent of a swarm of CPSs. Evaluating
their fitness requires simulation with a certain fidelity related to the design stage. For example, in early design
phases simple 2D simulation might be sufficient while in final stages, full physics simulation can be exploited.
This requirement may potentially lead to serious performance and scalability issues that shall therefore be
addressed from the very early architecture design iterations.

To better clarify these issues let the reader consider a simple example. A CPSwarm user needs to design a
swarm of 5 drones for a “search and rescue” task. After the initial definition of swarm components and
subsystems, the swarm developer defines the family of algorithms to be used for solving the problem and
starts the CPSwarm Optimization Tool. For each candidate solution, composed of 5 CPS controllers, a simple
2D simulation of a mission is exploited to compute the candidate fitness. The mission has an average
duration of 1 minute in simulated time34. If at each generation 50 different candidates are evaluated, the
optimization components need to run 50 different simulations of 1 minute each, per generation. Given the
simplicity of this sample problem, the optimization converges quite fast and it can reach a satisfying fitness
within only 100 iterations. In a pure sequential setting, this leads to a total optimization time of roughly 83
hours, see (1).

50 ∙ 60𝑠 ∙ 100 = 300000𝑠 = 83,3ℎ (1)

While for some tasks such a time frame might be acceptable, for search and rescue the above optimization
time would probably be too long. The situation might easily get worse, when swarms are complex, when

34 This is a naive assumption as the simulation time depends on the “quality” of the solution and, in principle,
might be quite long, and e.g., reach a maximum, pre-set time limit.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 65 of 73

simulations are computationally intensive and when the nature of the addressed problem implies slower
convergence rates.

Therefore, the main workbench bottleneck can be identified in the evolutionary optimization step and
suitable countermeasures shall be designed from the very beginning of the CPSwarm architecture design. In
particular, in this first release of the architecture design it is already envisioned the possibility to exploit
cloud-based and/or containerized solutions for simulations, thus enabling to simulate an entire population of
solutions in one step. This is expected to sensibly reduce the amount of time needed to complete the
optimization phase, thus improving the overall performance of the CPSwarm workbench.

More formally, let n be the number of candidates per generation and m the number of generations required
to reach a valid solution. Assuming that for each individual evaluation a maximum simulation time (tm) is
allowed, in the sequential case the total optimization time (in the worst case) would be:

𝑡𝑜𝑜𝑜 = 𝑛 ∙ 𝑡𝑚 ∙ 𝑚 (2)

In the parallel simulation case, instead, if k is the number of simulations that can be run in parallel, the total
simulation time (in the worst case) is reduced as follows:

𝑡𝑠𝑠𝑚 = ⌈ 𝑛
𝑘

 ⌉ ∙ 𝑡𝑚 ∙ 𝑚 (3)

 If k≥n this reduces to

𝑡𝑠𝑠𝑚 = 𝑡𝑚 ∙ 𝑚 (4)

This shows an improvement in terms of performance and scalability.

6.2 CPSwarm Deployment Toolchain

Typically, single CPS deployment workflows are based on direct connection between the
programming/deployment tool and the target CPS (e.g., through direct cable connection or over the air).
While this is perfectly acceptable for programming single CPS – considering that typical deployments tasks
are quite infrequent – it may quickly become a serious bottleneck when multiple systems need to be
configured and deployed at the same time, with relatively high frequency. In this last scenario, direct
deployment quickly fails and leads to unacceptable high times for deploying new solutions, with a
consequent impact on the ability to re-act to changing contexts.

To address this scalability issue, several solutions can be exploited which were developed in the context of
automatic update systems, and thoroughly tested in the last 20 years. Packaging systems and distribution
systems are designed to dispatch updates to high numbers of platforms, typically not a-priori known. In
these systems, new software releases are published on channels reachable over the Internet and target
systems autonomously decide when download and installation of updates shall be performed, depending on
their internal schedule and conditions. In contrast with direct deployment, deployment based on updates
scales gracefully and does not add additional requirements on the deployment system, which can be fairly
simple (a web application would be sufficient in many cases). On the other hand, it does not guarantee a
precise point in time in which updates are installed on the target platforms. In other words, with the update-
based approach scalability is traded-off with potentially high latency in code deployment.

In this first release of the CPSwarm architecture specification, the Deployment Toolchain has been designed
by taking inspiration from update systems, thus enabling easier scaling to swarms composed by dozens of
platforms. Nevertheless, dedicated mechanisms for “forcing” updates are under study, in the context of this

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 66 of 73

project, to trigger update checking at the CPS side in response to certain events generated by the
Deployment Toolchain. To this purpose, the project is currently investigating the possibility of leveraging the
CPS Telemetry components to host an inbound message queue (e.g., through MQTT subscriptions) for
forcing updates at a specified time.

6.3 Summary and discussion

To better summarize the initial considerations on scalability and performance issues, reported in previous
paragraphs, a dedicated performance and scalability page on the project wiki has been set up. Such a page is
exploited by partners to timely trace detected bottlenecks and scalability issues and to propose possible
counter measures.

Figure 34 - The Performance and Scalability tracking page on the project wiki.

Each of the issues listed on such a page will be strictly monitored during the implementation and integration
phases and corresponding test protocols will be established (and documented in D3.7, D2.8 and D8.7). For
each issue, quantitative metrics will be defined, e.g., the number of CPS systems deployable in one pass, to
provide a sound and replicable evaluation of achieved results and to drive subsequent design refinements.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 67 of 73

7 Future Steps

7.1 Future activities and timeline

This deliverable specified an initial architecture design for the CPSwarm system. As stated earlier, the
architecture is subjected to modifications as the project evolves. Future changes and improvements will be
documented in the later deliverable 3.2, Updated System Architecture Analysis and Design Specification, which
is due on month 18.

According to the architecture diagram, a test and integration plan should be established very shortly. This
plan should serve as the guideline for future development activities and it will be documented in deliverable
3.7, Test and Integration Plan. The deliverable is due on month 9.

7.2 Alternative architecture for future exploration

According to different use cases, two architectural approaches for the Optimization Environment are
possible. In the first approach, the agent controller that is optimized resides only within the Optimization
Tool. In the second approach, the Optimization Tool is running the optimization process by passing the code
of the agent controller to the optimization simulator before a simulation.

In this deliverable, the focus is on presenting the software architecture with the first approach (Figure 8). The
optimization simulator is used to evaluate each single step of the simulation providing the required sensor
readings to the Optimization Tool and executing the actuator commands coming back from the Optimization
Tool. This approach requires frequent communication between the Optimization Tool and the simulator thus
a fast communication channel between them is crucial. This is the case if both the Optimization Tool and the
Simulator run on the same system or are connected via a fast network. The actual influence on the
performance depends on the ration between the communication overhead and the time to perform one time
step in the simulator. If the computations of a simulator step take significantly longer in comparison to the
communication of sensor and actuator values, this approach is feasible. Another case are simple problems,
where the overall time to evolve a solution is short enough so that the waiting time is insignificant. The
advantage of this approach is that a generic interface can be defined that receives and sends the interface
data, thus allowing an easy integration of the Optimization Tool with several different simulators.

In the second approach, a code generation unit converts the controller algorithm into target code that can
be executed by the simulator. The simulator would then execute a simulation run without further interaction
with the Optimization Tool and communicates only the resulting fitness evaluation when the simulation ends.
This approach requires to pass code from the Optimization Tool to the simulator and might need a
compilation run with the exported code with the simulation. While the overall execution time of the
simulation time will be shorter than in the first approach, the starting and set-up time for the simulation
might increase, for example if a recompilation of the simulation is required. The advantage of this approach
is that the same component can be used to generate the code for deployment in the simulation or on the
target hardware, thus the generated code is already evaluated in the simulation.

Although both approaches have their advantages and disadvantages in different use cases, the conclusion is
that approach one represents the most common use cases and should be prioritized. To establish a clear
goal in the CPSwarm project, the effort will focus on the implementation of the first approach. The second
approach will only be explored, if the implementation of the first approach is finished and resources are still
available for the exploration.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 68 of 73

8 Conclusions

This deliverable presents the available methodologies, tools and standards for swarm development as well as
an initial version of architecture design for the CPSwarm system, which is derived from the system
requirements gathered in WP2.

One objective of this document is to establish a technical common ground among partners for future
developments. On one hand, tools that are available to be utilized in CPSwarm were presented as later
implementation options. On the other hand, components and interfaces were defined in the architecture
design, serving as a blueprint for future development of WP4, WP5, WP6 and WP7.

Now that components and interfaces are defined, this deliverable also paves the way for the next activity of
WP3, namely Task 3.3, Continuous System Integration. The result in this deliverable will be the foundation of
establishing the test and integration plan for the CPSwarm system.

As next steps, the architecture design will be further revisited, revised and refined as the project evolves. The
new modification will be documented in later deliverable D3.2, Updated System Architecture Analysis and
Design Specification.

Conclusively, this document presents the first step in the iterative process of the overall CPSwarm
architecture design. This is a first significant result that will be used as input to subsequent activities of the
project.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 69 of 73

Acronyms

Acronym Explanation

CPS Cyber physical system

SITL Software in the loop

HITL Hardware in the loop

PFSM Probabilistic finite state machines

ANN Artificial neural network

DSL Domain specific language

RTE Runtime environment

IoT Internet of Things

ROS Robot Operating System

List of figures
Figure 1 - The PX4 software architecture. ... 12
Figure 2 - Process of designing a swarm intelligence model and the corresponding algorithm (adapted from [5]). 15
Figure 3 - Architecture description concepts (Adapted from [1]) ... 21
Figure 4 - Activities supporting architecture definition [29].. 22
Figure 5 - CPSwarm conceptual architecture diagram .. 24
Figure 6 - Data flow between workbench components (extracted from D2.3) ... 26
Figure 7 - CPSwarm system context diagram .. 28
Figure 8 - Overview of components in CPSwarm system ... 30
Figure 9 - Functional structure model of Modelling tool ... 30
Figure 10 - Overview of Modelling tool view .. 31
Figure 11 - Optimization Tool .. 33
Figure 12 - Optimization Simulator ... 35
Figure 13 - Sample Finite State Machine specification. ... 37
Figure 14 - Excerpt of template for template-based generation pattern of a state machine in ROS. .. 37
Figure 15 - Code Generator: preliminary architecture. .. 38
Figure 16 - High-level activity diagram describing the CPSwarm Code Generator behavior. .. 39
Figure 17 - Deployment Tool: preliminary architecture. ... 40
Figure 18 - Functional structure model of Monitoring and Configuration Framework ... 42
Figure 19 - The CPSwarm Runtime Environment. .. 43
Figure 20 - The CPSwarm abstraction layer.. 43
Figure 21 - The CPSwarm Update System. ... 44
Figure 22 - The CPSwarm update process. ... 45
Figure 23 - The CPSwarm Telemetry components. ... 45
Figure 24 - Data flow of CPSwarm system .. 47
Figure 25 - Parameters for the Algorithm Optimization Framework ... 49
Figure 26 - Preliminary data-model of Code Generation directives. ... 51
Figure 27 - Preliminary data-model of Bundling Directives. ... 51
Figure 28 - Preliminary data-model of Deployment configuration. ... 52
Figure 29 - Data flow within the optimization tool ... 53
Figure 30 - The OGC Sensor Things API data model. ... 55

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 70 of 73

Figure 31 - Network diagram of CPSwarm component during the deployment. .. 57
Figure 32 - Threats categorized by CIA .. 60
Figure 33 - Countermeasures to the CPSwarm system ... 62
Figure 34 - The Performance and Scalability tracking page on the project wiki. ... 66

List of tables

Table 1. Initial list of simulation tools analysed to direct the architecture design. .. 10
Table 2. . Initial list of 3D Simulation tools analysed to direct the architecture design. .. 11
Table 3. Modelling standards for CPS swarm design. .. 13
Table 4. Stakeholders of the CPSwarm System (extracted from D2.1) .. 24
Table 5 - Mapping between components specified in D2.3 and those in architecture design .. 27

References

[1] IEEE, ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture
description, 2011.

[2] J. Craighead, R. Murphy, J. Burke and B. Goldiez, "A Survey of Commercial and Open Source
Unmanned Vehicle Simulators.," in Proceedings of ICRA 2007, 2007.

[3] J. Kramer and M. Scheutz, "Development environments for autonomous mobile robots: A
survey," Autonomous Robots, p. 132, 2007.

[4] L. Chee Peng and S. Dehuri, Innovations in Swarm Intelligence, Springer-Verlag Berlin
Heidelberg, 2009.

[5] H. R. Ahmed and J. I. Glasgow, "Swarm Intelligence: Concepts, Models and Applications,"
Kinston, Canada, Queen's University, School of Computing Technical Reports, 2012.

[6] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioral model," in SIGGRAPH
'87 Proceedings of the 14th annual conference on Computer graphics and interactive
techniques, 1987.

[7] M. Brambilla, E. Ferrante, M. Birattari and M. Dorigo, "Swarm robotics: a review from the
swarm engineering perspective," Swarm intelligence, pp. 1-14, 2013.

[8] M. Granovetter, "Threshold Models of Collective Behavior," American Journal of Sociology, pp.
1420-1443, May 1978.

[9] O. Soysal and E. Sahin, "Probabilistic aggregation strategies in swarm robotic systems," in
Swarm Intelligence Symposium, 2005. SIS 2005. Proceedings 2005 IEEE.

[10] S. Nouyan, A. Campo and M. Dorigo, "Path formation in a robot swarm," Swarm Intelligence,
vol. 2, no. 1, pp. 1-23, 2008.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 71 of 73

[11] T. H. Labella, M. Dorigo and J.-L. Deneubourg, "Division of labor in a group of robots inspired
by ants' foraging behavior," ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 1, no. 1, pp. 4-25, September 2006.

[12] L. E. Parker, "L-ALLIANCE: task-oriented multi-robot learning in behavior-based systems,"
Advanced Robotics, vol. 11, no. 4, pp. 305-322, 1996.

[13] J. Lee and R. Arkin, "Adaptive multi-robot behavior via learning momentum," in Intelligent
Robots and Systems, 2003. (IROS 2003), 2003.

[14] L. Li, A. Martinoli and Y. S. Abu-Mostafa, "Systems, Learning and Measuring Specialization in
Collaborative Swarm," Adaptive Behavior, vol. 12, no. 3-4, pp. 199-212, 2004.

[15] S. Hettiarachchi, Distributed Online Evolution for Swarm Robotics, University of Wyoming,
Laramie, WY., 2007.

[16] A. Rosenfeld, G. A. Kaminka, S. Kraus and O. Shehory, "A study of mechanisms for improving
robotic group performance," Artificial Intelligence, vol. 172, no. 6-7, pp. 633-655, 2008.

[17] J. Pugh and A. Martinoli, "Parallel learning in heterogeneous multi-robot swarms," in
Evolutionary Computation, 2007. CEC 2007, 2007.

[18] D. He, H. Ren, W. Hua, G. Pan, S. Li and Z. Wu, "FlyingBuddy: augment human mobility and
perceptibility," in 13th International Conference on Ubiquitous Computing, 2011.

[19] S. Schneegass, F. Alt, J. Scheible and S. A., "Midair displays: concept and first experiences
with free-floating pervasive displays," in International Symposium on Pervasive Displays,
2014.

[20] R. W. Picard, "Affective computing: challenge," International Journal of Human-Computer
Studies, pp. 55-64, 2003.

[21] C. Breazeal, "Emotion and sociable humanoid robots," International Journal of Human-
Computer Studies, pp. 119-155, 2003.

[22] H. Chao, M. M.Q., L. P.X. and W. Xiang, "visual gesture recognition for human-machine
interface of robot teleoperation," in Intelligent Robots and Systems, 2003. (IROS 2003)., 2003.

[23] J. R. Cauchard, K. Y. Zhai, M. Spadafora and J. A. Landay, "Emotion Encoding in Human-
Drone Interaction," in The Eleventh ACM/IEEE International Conference on Human Robot
Interaction, Christchurch, 2016.

[24] R. A. S. Fernández, J. L. Sanchez-Lopez, C. Sampedro, H. Bavle, M. Molina and P. Campoy,
"Natural user interfaces for human-drone multi-modal interaction," in International Conference
on Unmanned Aircraft Systems (ICUAS),, Arlington, 2016.

[25] A. Adams, "Human-Robot Interaction Design: Understanding User Needs and Requirements,"
in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2016.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 72 of 73

[26] J. Scholtz, B. Antonishek and J. Young, "Evaluation of a Human Robot Interface: Development
of a Situational Awareness Methodology.," in Hawaii International Conference on System
Sciences, 2004.

[27] H. A. Yanco, J. L. Drury and J. Scholtz, "Beyond usability evaluation: analysis of human-robot
interaction at a major robotics competition," Human Computer Interaction, vol. 19, no. 1, pp.
117-149, 2004.

[28] J. L. Drury, J. Scholtz and D. Kieras, "Adapting GOMS to model human-robot interaction,," in
nd ACM/IEEE International Conference on Human-Robot Interaction (HRI),, Arlington, 2007.

[29] N. Rozanski and E. Woods, Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives, Addison-Wesley Professional, 2011.

[30] ITU-T-Y.2060, Overview of the Internet of Things, 2012.

[31] A. e. a. Cardenas, "Challenges for securing cyber physical systems.," Workshop on future
directions in cyber-physical systems security, vol. 5, 2009.

[32] Y. e. a. Gao, "Analysis of security threats and vulnerability for cyber-physical systems," in
Computer Science and Network Technology (ICCSNT), 2013 3rd International Conference on
IEEE, 2013.

[33] F. A. T. a. K. M. M. Higgins, "Survey on security challenges for swarm roboticsSurvey on
security challenges for swarm robotics," in Autonomic and Autonomous Systems, 2009.
ICAS'09. Fifth International Conference on. IEEE, 2009.

[34] I. Grigg, Pareto-Secure, A definition of security using the theory of Pareto Efficiency, 2005.

[35] A. Mpitziopoulos, D. Gavalas, C. Konstantopoulos and G. Pantziou, "A Survey on Jamming
Attacks and," IEEE Communications Surveys & Tutorials, vol. 11, no. 42-56, 2009.

[36] A. B. A. V. Elisabeth Hansson, "Security in mobile ad hoc networks," 2005.

[37] Z. Huang and Y. Chen, "Log-Linear Model Based Behavior Selection Method for Artificial Fish
Swarm Algorithm," Computational Intelligence and Neuroscience, p. 10, 2015.

[38] A. Cardenas, S. Amin and B. Sinopoli, "Challenges for securing cyber physical systems.,"
Workshop on future directions in cyber-physical systems security, vol. 5, 2009.

[39] Y. Gao, Y. Peng and F. Xie, "Analysis of security threats and vulnerability for cyber-physical
systems," in Computer Science and Network Technology (ICCSNT), 2013 3rd International
Conference on IEEE, 2013.

[40] F. Higgins, A. Tomlinson and K. M. Martin, "Survey on security challenges for swarm
roboticsSurvey on security challenges for swarm robotics," in Autonomic and Autonomous
Systems, 2009. ICAS'09. Fifth International Conference on. IEEE, 2009.

Deliverable nr.
Deliverable Title

Version

D3.1
Initial System Architecture & Design Specification
1.0 - 18/08/2017

Page 73 of 73

	Document History
	Internal Review History
	Table of Contents
	1 Executive Summary
	2 Introduction
	2.1 Related documents

	3 Analysis of Relevant Engineering Methods, Tools, Technologies and Standards
	3.1 Methodology
	3.2 Survey of Tools and Frameworks currently adopted for CPS design / development
	3.2.1 Design
	3.2.1.1 Drones
	3.2.1.2 Rovers
	3.2.1.3 Automotive

	3.2.2 Simulation
	3.2.3 Runtime
	3.2.3.1 ROS and PX4
	3.2.3.2 AUTOSAR

	3.3 Survey of existing modelling standards / patterns
	3.3.1 Existing modeling standards
	3.3.2 Existing Swarm Intelligence Models

	3.4 Preliminary Analysis of design methodologies applicable to the CPS domain
	3.4.1 Methodologies for Swarm & Self-Organizing Behavior Design
	3.4.1.1 Behavior-Based Design Methods
	3.4.1.2 Automatic design methods

	3.4.2 Methodologies for user-centered design applied to Human-CPS interaction

	4 Architecture Design
	4.1 Methodology
	4.1.1 Software Architecture Design Standards
	4.1.2 Definitions
	4.1.3 Software Architecture Design Process
	4.1.3.1 Architecture Design Process
	4.1.3.2 Architecture Viewpoints

	4.2 Stakeholders and Requirements
	4.2.1 Stakeholders
	4.2.2 Requirements

	4.3 Context View
	4.4 Functional View
	4.4.1 High-level functional view
	4.4.2 Design Environment
	4.4.2.1 Modelling Tool
	4.4.2.2 Modelling Library

	4.4.3 Algorithm Optimization Environment
	4.4.3.1 Optimization Tool
	4.4.3.2 Optimization Simulator

	4.4.4 Bulk Deployment Toolchain
	4.4.4.1 Code Generator
	4.4.4.2 Deployment Tool

	4.4.5 Monitoring and Configuration Framework
	4.4.6 Runtime Environment
	4.4.6.1 Abstraction Layer
	4.4.6.2 CPSwarm Update System
	4.4.6.3 CPSwarm Telemetry

	4.5 Information View
	4.5.1 Data flow in CPSwarm System
	4.5.2 Data model in CPSwarm System
	4.5.2.1 Flow 1 (Models):
	4.5.2.2 Flow 2 (Optimization Configuration)
	4.5.2.3 Flow 3 (Simulator Configuration)
	4.5.2.4 Flow 4 (Deployment Configuration)
	4.5.2.5 Flow 5 (Monitoring Configuration)
	4.5.2.6 Flow 6 (Simulation Real-time Exchange)
	4.5.2.7 Flow 7 (Fitness Score)
	4.5.2.8 Flow 8 (Algorithm)
	4.5.2.9 Flow 9 (Deployable Code)
	4.5.2.10 Flow 10 (Deployable Code)
	Flow 10 (Deployable Code) represent the code that is transferred to target devices by the Deployment Tool. The Deployment Tool does not change the generated code, but rather transfers the code in a form suitable for the specific deployment strategy (i...
	4.5.2.11 Flow 11 (Swarm Real-time Data)
	4.5.2.12 Flow 12 (Swarm Runtime Command)

	4.6 Deployment View

	5 Security Perspective
	5.1 Security threat analysis
	5.2 Countermeasures
	5.3 Security aspects in CPSwarm architecture design

	6 Scalability Perspective
	6.1 CPSwarm Workbench
	6.2 CPSwarm Deployment Toolchain
	6.3 Summary and discussion

	7 Future Steps
	7.1 Future activities and timeline
	7.2 Alternative architecture for future exploration

	8 Conclusions
	Acronyms
	List of figures
	List of tables

