

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D3.4 – INITIAL CPSWARM WORKBENCH AND ASSOCIATED
TOOLS

Deliverable ID D3.4

Deliverable Title Initial CPSwarm Workbench and associated tools

Work Package WP3 – Architecture design and Component Integration

Dissemination Level PUBLIC

Version 1.0

Date 2017-11-30

Status Final

Lead Editor FRAUNHOFER

Main Contributors Junhong Liang (FRAUNHOFER), Farshid Tavakolizadeh
(FRAUNHOFER), Sisay Adugna Chala (FRAUNHOFER)

Published by the CSPwarm Consortium

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 2 of 32

Document History

Version Date Author(s) Description

0.01 2017-11-02 Junhong Liang
(FRAUNHOFER) First Draft with TOC and initial content

0.02 2017-11-22 Sisay Chala
(FRAUNHOFER) Added Introduction and Scope

0.03 2017-11-22 Junhong Liang
(FRAUNHOFER) Fixed typos

0.03 2017-11-24 Sisay Chala
(FRAUNHOFER)

Added Section 3.3.4 and Figure 9, modified first sentence of
Section 1.1 and fixed some typos

0.04 2017-11-26
Farshid

Tavakolizadeh
(FRAUNHOFER)

Added content to section 3.2

0.05 2017-11-29 Junhong Liang
(FRAUNHOFER) Added content to section 3.4

0.10 2017-11-30 Junhong Liang
(FRAUNHOFER)

Minor modification; Fixed misspells, typos and formats; Released
for internal review;

0.11 2017-12-04 Sisay Chal
(FRAUNHOFER)

Modifications inserted to address few of the issues highlighted in
the review from LAKE

0.12 2017-12-05
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Additional modifications inserted to address few of the issues
highlighted in the review from LAKE

0.8 2017-12-06 Junhong Liang
(FRAUNHOFER)

Modifications inserted to address remaining issues highlighted
from LAKE and issues pointed out by ROBOTNIK

0.9 2017-12-08
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Fixed typo in figure

1.0 2017-12-08 Junhong Liang
(FRAUNHOFER) Final version to be submitted to the EC

Internal Review History

Review Date Reviewer Summary of Comments

2017-12-01
(v 0.10) Micha Rappaport (LAKE) Modifications inserted and comments

2017-12-05
(v 0.10)

Angel Soriano
(ROBOTNIK) Modifications inserted and comments

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 3 of 32

Table of Contents

Document History .. 2
Internal Review History .. 2
Table of Contents ... 3
1 Introduction .. 4

1.1 Scope .. 4
1.2 Related documents.. 4

2 CPSwarm Initial Components .. 5
2.1 Initial Modelling Tool.. 5
2.2 Initial CPS Modelling Library.. 7
2.3 Initial Swarm Modelling Library .. 8
2.4 Initial Simulation Environment .. 9

3 CPSwarm Initial Components Integration .. 12
3.1 Component Integration and Interfaces ... 13
3.2 Continuous Integration (CI) Platform ... 14
3.3 Integration Test Setup .. 18

4 Conclusions ... 27
Acronyms ... 28
List of figures .. 28
References ... 29
Annex A: Dockerfile for Modelio .. 30
Annex B: Dockerfile for FREVO .. 31
Annex C: Dockerfile for Minisim ... 32

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 4 of 32

1 Introduction

This document is prepared to support the CPSwarm project in defining, documenting, and implementing a
software testing methodology and test management governance framework. It can be adopted in order to
achieve improvement in overall software quality.

This document provides the initial workbench and associated tools under which CPSwarm project can
operate to deliver testing services to the various system components. This ensures that all products satisfy
the requirements of design specifications and performance criteria based on the requirements specified in
D2.3.

The overall software testing goal is to produce high-quality systems using a set of managed and controlled
processes, which meet the requirements and expectations. This document establishes a Continuous
Integration (CI) software testing methodology and associated tools for CPSwarm.

1.1 Scope

This document elaborates the requirements described in the Initial Requirements Report (D2.3) and the
CPSwarm Test and Integration Plan (D3.7). It furthermore provides the required components, i.e., Initial
CPSwarm Modeling Library (D4.1), Initial Swarm Modeling Library (D4.4), Initial Swarm Modeling Tool (D5.2),
Initial Simulation Environment (D6.1), and their interactions for the integration and system tests.

A public prototype deliverable is produced by Task T3.3, which documents the integration results of the
Initial CPSwarm Workbench and associated tools. In order to show the context of this deliverable, the input-
process-output relationship between this Integration test document and the related deliverables and tasks
are shown in the Figure 1.

Figure 1 - Relationship of this document with other deliverables and Tasks

1.2 Related documents

ID Title Reference Version Date

[RD.1] Initial Requirements Report D2.3 1.0 2017-06-30

[RD.2] Test and Integration Plan D3.7 1.0 2017-09-30

[RD.3] Initial CPSwarm Modeling Library D4.1 1.0 2017-09-30

[RD.4] Initial Swarm Modeling Library D4.4 1.0 2017-10-31

[RD.5] Initial Swarm Modeling Tool D5.2 1.0 2017-09-30

[RD.6] Initial Simulation Environment D6.1 1.0 2017-09-30

D4.1 D4.4 D3.7

Task 3.3 D3.4
(This

D5.2 D6.1 D2.3

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 5 of 32

2 CPSwarm Initial Components

In the first integration phase of CPSwarm, the project team focused on incorporating initial components
regarding the modelling and optimization aspects. According to the document of action, components
developed in D4.1, D4.4, D5.2, and D6.1 should be integrated until the end of M11, which include the initial
CPS Modelling Library, the initial Swarm Modelling Library, the initial Modelling Tool, as well as the initial
Simulation Environment. They are highlighted in Figure 2. It is important to notice that the components
defined in the deliverables do not have a one-to-one match to the architecture diagram. In fact, the
Modelling Library in the architecture diagram includes both the initial CPS Modelling Library (D4.1) and the
initial Swarm Modelling Library (D4.4). While the Modelling Tool in the diagram match the initial Modelling
Tool defined in D5.2, the Algorithm Optimization Environment in the diagram matches the Simulation
Environment defined in D6.1 (see notations on Figure 2).

Figure 2 - CPSwarm system architecture extracted from D3.1 (Components to be integrated are highlighted in
red rectangles. The annotations show the mapping between components in the diagram to the components

defined in deliverables)

These components are chosen for the first integration phase because they are the crucial components for the
beginning of the whole CPSwarm system workflow, namely modelling and optimization. The integration of
these components builds a sound foundation for later development.

This chapter provides a brief overview of the aforementioned components’ implementations, so that readers
can conveniently have a big picture of the current development progress. Further implementation details are
documented in the respective deliverables.

2.1 Initial Modelling Tool

The CPSwarm Modelling Tool is built on top of the open source graphical modelling environment named
Modelio1, whose graphical user interface is shown in Figure 3. Modelio is developed by SOFTEAM and it
delivers a broad range of standards functionalities and is capable of modelling standard diagrams such as

1 https://www.modelio.org/

D4.1, D4.4 D5.2

D6.1

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 6 of 32

UML2, BPMN2, MARTE3, SysML4, etc. Modelio’s architecture is built on a plugin-based framework, around
which extensions are defined to fulfil different functionalities. This architecture allows the Modelio modelling
environment to be flexible and configurable simply by adding the desired extension and related
functionalities.

Figure 3 - Modelio graphical user interface

As depicted in Figure 4, the CPSWarm Modelling tool is composed of Modelio itself, a dedicated CPSwarm
extension to provide the functionalities related to CPS swarm design, and a set of pre-existing extensions to
reuse their relevant functionalities in the CPSwarm context. At M11 of CPSwarm, only the SysML extension
has been chosen for its functionalities related to system modelling.

2 http://www.bpmn.org/
3 http://www.omg.org/omgmarte/
4 http://www.omgsysml.org/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 7 of 32

Figure 4 - Subcomponent diagram of the Modelling Tool

2.2 Initial CPS Modelling Library

When designing a swarm consisting of CPSs, modelling the individual CPSs (i.e. swarm members) in the
swarm is necessary so that the designer can define the composition of the swarm. For this purpose, the CPS
Modelling Library is defined to help easing development and integration of complex swarms of
heterogeneous CPSs by providing existing and reusable components and models to the modeller. The overall
idea is to have a library for the modeller that contains certain predefined models. These models can be
reused, changed, or added by the modeller.

At M11, three groups of libraries are defined in the CPS Modelling Library: swarm member, environment, and
goal libraries.

• Swarm member library: The swarm member library describes an individual CPS used in swarm
applications. Following sub-libraries are available:

1. local memory

2. behaviour

3. physical aspects

4. security (optional)

5. human interaction (optional)

• Environment library: The environment library describes the environment in which the swarm of
CPSs is acting. Several models express an environment, whereby the following ones are
indispensable (further ones can be added if necessary):

1. 2D/3D map of the environment

2. Size of the environment

3. Resolution

• Goal library: The goal library describes the goal that the swarm of CPSs wants to reach. The goal is
expressed by a fitness value and a calculation specification. The calculation is done by incorporating
parameters from other models. If the application asks for it, multiple fitness values can be modelled,
possibly related to each other.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 8 of 32

Currently these libraries are built-in into the CPSwarm extension for Modelio so that they have seamless
integration with the Modelling Tool. When the user installs the CPSwarm extension, the libraries are available
for use in Modelio.

2.3 Initial Swarm Modelling Library

Another aspect of modelling a swarm of CPSs is to model the intelligent behaviour of the swarm as a whole.
In CPSwarm a common modelling standard for swarm behaviour has been introduced. The main idea is to
have a formulation and definition of models in SysML visually representing:

• swarm intelligence algorithms

• individual behaviours of existing swarm intelligence algorithms for customization

The Swarm Modelling Library is defined which helps the designer to model the behaviour of a swarm. This
library comprises existing swarm intelligence algorithms such as the honeybee algorithm [1], the BEECLUST
algorithm [2], or the firefly algorithm [3] from a high-level view. Figure 5 shows a model to represent a swarm
member with BEECLUST algorithm.

At M11, the intelligent models found in the Swarm Modelling Library include the following aspects:

• a description of their functionality

• defined inputs and outputs

• defined local states (if necessary)

• deposited Java and C++ code (in a first version: pseudocode)

Figure 5 Model to represent a swarm member with BEECLUST

Typically, real-world applications come with needs that cannot be directly modelled with an existing nature
inspired swarm intelligence algorithm. Therefore, it is useful to have a process that allows constructing
customized swarm intelligence algorithms. This is enabled by a library that provides single behaviours
extracted out of given swarm intelligence algorithms.

The Modelling Tool allows to construct a state machine with all the required behavioural elements. An
example is visualized in Figure 11.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 9 of 32

Figure 6 Caption missing

Currently the swarm modelling libraries are still in conception phase and are hence not yet fully
implemented. New implementation details will be added in future deliverables.

2.4 Initial Simulation Environment

The initial Simulation Environment includes the optimization tool and the optimization simulator highlighted
in Figure 2. These two components are implemented using different existing tools. FREVO5 is chosen to
implement the optimization tools, while various simulators are chosen as candidates for the optimization
simulator.

FREVO (Framework for evolutionary design) is a tool developed by LAKE and KLU for evolving and evaluating
self-organizing systems using evolutionary algorithms [4]. Users can define the problem, the controller
representation, the optimization method, and the ranking method through the FREVO GUI (see Figure 7).
FREVO runs the evolutionary optimization which creates candidate solutions to the problem. The candidates
are evaluated through simulations that implement the problem definition. The best performing candidates
are evolved in the optimization process leading to an optimized solution after multiple iterations. This
solution is then selected as the optimized algorithm to solve the problem.

5 http://frevo.sourceforge.net/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 10 of 32

Figure 7 - FREVO graphical user interface

In the first integration phase, the ROS6-based Stage7 simulator and Gazebo8 simulator are chosen as the
optimization simulator.

Stage is a low-fidelity two-dimensional robot simulator. It provides a virtual world populated by mobile
robots and sensors, along with various objects for the robots to sense and manipulate. A screenshot of such
a simulation can be seen in Figure 8.

6 http://www.ros.org/
7 http://playerstage.sourceforge.net/doc/stage-svn/
8 http://gazebosim.org/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 11 of 32

Figure 8 - Stage simulator

Gazebo is a 3D high-fidelity simulator for robotic applications. It provides many features such as dynamic
robotic simulation, sensor simulation, etc. Figure 9 shows a screenshot of the Gazebo simulator.

Figure 9 - Gazebo simulator

In order to have an easy and convenient evaluation of the communication between the Optimization Tool
and the Optimization Simulator, the project team developed a simple, single-purpose simulator called
Minisim. The Minisim simulator serves as an initial tool to evaluate possible communication options without
requiring the developers to dive too deep into the implementation details of Stage or Gazebo.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 12 of 32

3 CPSwarm Initial Components Integration

In the initial CPSwarm components integration, components described in Chapter 2 are interconnected as
shown in Figure 10. The CI test takes detailed integration instructions or integration scripts, related
dependencies, and test cases together with the software to be tested. Successful execution of the integration
test produces the latest build of the system and a notification that the process is successfully completed.
However, if the integration test execution is unsuccessful, an issue is initiated and a notification about the
status of integration test is produced.

Figure 10 Integration Test Set Up

In this chapter, aspects regarding the integration of the aforementioned components are described. First, the
interface of each component will be described in section 3.1. Then, the basic principles and tools used for CI
will be introduced in section 3.2. Finally, the setup of CI tools will be presented in section 3.3.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 13 of 32

3.1 Component Integration and Interfaces

The current interfaces between the initial components are depicted in Figure 11. It is worth mentioning that
since the initial architecture was defined in D3.1, some limitations have been discovered in the evolvement of
the development process. Therefore, modifications have been made to the initially defined architecture.
Although not yet officially documented (since the updated architecture will be documented in the future
deliverable D3.2 in M16), the changes have been applied to the definition of interfaces for the initial
CPSwarm components as seen in Figure 11.

Comparing the Figure 11 with the relevant part in the initial architecture diagram (Figure 2), the major
difference found is that there is no direct interface between Modelling Tool and Optimization Simulator. The
reason for this change is the following: At the time of defining the initial architecture, the Modelling Tool was
conceived as a central configuration user-interface for all the components in the CPSwarm system. Therefore,
the configuration of the Optimization Simulator should have been done in the Modelling Tool and an
interface between these two components was necessary for passing the configuration data. However,
limitations of such approach have been discovered. The limitations include the following:

• Complication by heterogeneous interfaces: interfaces to communicate with different components
could vary significantly, e.g. currently the Modelling Tool and the Optimization Tool use a file-based
interface, while the Optimization Simulator uses an MQTT-based interface. This means that if the
Modelling Tool is to interact with all other components, the aforementioned interface functionalities
must be built in this single component, which makes this component over-complicated and hard to
maintain.

• Coupled inputs from multiple components: in the initial architecture diagram, the Optimization
Simulator receives coupled information from two interfaces: the Simulator Configuration API and the
Simulator API. It has been proven that it is difficult to handle different inputs consistently. Instead, if
the coupled inputs come from only one interface, it would be much cleaner and easier to handle.

Since then, the interface between the Modelling Tool and the Optimization Simulator has been removed.

Figure 11 - Interfaces between the CPSwarm initial components

In the following sub-sections, the interfaces between these initial components, i.e., Library API, Optimization
Tool API and Simulation API are described respectively.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 14 of 32

3.1.1 Library API

The libraries related to CPSwarm are bundled as a single CPSwarm extension. This extension can be installed
into a project of the Modelling Tool Modelio as a plugin during runtime. Once installed, the functionalities as
well as the models in the libraries can be used within that project. Since Modelio is built upon a plugin
framework, that plugin framework provides the mechanism for interaction between the Modelling Tool and
the Modelling Library.

3.1.2 Optimization Tool API

Currently, the Modelling Tool Modelio and the Optimization Tool FREVO communicate via a file-based
method. After the modelling is finished, files containing modelling and configuration data are generated by
the Modelling Tool and these files are read in by the Optimization Tool.

In the current implementation, the Modelling Tool generates two files: one XML file and one Java source
code file. The XML file contains modelling data necessary for the Optimization Tool and the Java source code
file specify how the data should be read by the FREVO. These two files are then included in the FREVO’s build
path and FREVO needs to be recompiled to take the models into account.

It is worth mentioning that this approach serves merely as initial exploration and evaluation for the interface
between the Modelling Tool and the Optimization Tool. More advanced methods for passing data from the
Modelling Tool to the Optimization Tool will be explored in the future to enhance usability. This allows a
more seamless integration of these two components, e.g., a recompilation of FREVO is not necessary to parse
the data.

3.1.3 Simulator API

For scalability reason, MQTT has been chosen as the communication interface between the Optimization Tool
and the Optimization Simulator. With this approach, the CPS controller is executedin the Optimization Tool. It
acts as the brain for the simulated robots in the Optimization Simulator and receives simulated sensor signals
from and sends action commands to the simulated robots via MQTT messages. For a more detailed
description of the MQTT interface please refer to D6.1.

3.2 Continuous Integration (CI) Platform

As mentioned in D3.7, CPSwarm adopts the CI as the software integration strategy. In order to realize this
approach, several off-the-shelf software solutions are used. Furthermore, state-of-the-art techniques are
implemented in order to achieve robust software testing with minimum maintenance requirements and
maximum fault tolerance.

3.2.1 CI Platform Deployment

The CPSwarm CI platform consists of several software components responsible for different aspects of the
continuous integration process. All the utilized components are free to use for open source projects.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 15 of 32

Figure 12. CPSwarm Initial Continuous Integration (CI) Platform. Two independent networks (yellow) consisting

of virtual machines (blue), hosting containerized applications.

The components of the CPSwarm CI platform are administrated by the consortium members. In particular,
ISMB provides the infrastructure for code management while FRAUNHOFER develops and maintains the
build system. Figure 12 illustrates the deployment model of the platform including the main software
components. These components are described below.

GIT Infrastructure

The GIT server and management User Interface (UI) is provided by an instance of GitLab9, a leading open-
source software for code management and continuous integration. The instance is deployed and maintained
by ISMB. Furthermore, an Nginx10 engine performs SSL termination and securely retrieves local resources on
external requests. In the CPSwarm CI platform, we only utilize the code management features of GitLab and
realize continuous integration using other tools. The GitLab instance is available to consortium members at
ISMB PerT Area Git Repository11. Members can perform push/pull git operation on projects created by them
and those which they have given write permissions. Pull operations are allowed on all other projects related
to CPSwarm. These operations can be performed over HTTPS as well as SSH. Additionally, members can use
the management UI to create and modify projects, view code and branching history, and manage access
rights.

Build Infrastructure
From a functional view, the build system is composed of a build server, at least one build agents, and any
number of ephemeral build containers. These functional suites consist of one or more components that are

9 https://gitlab.com
10 https://nginx.org
11 https://git.repository-pert.ismb.it

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 16 of 32

containerized with Docker12. The containerization enables component isolation and portability. Each
component is further explained below:

• Build Server: The build server is an instance of Atlassian Bamboo13, a professional tool for
continuous integration, deployment, and delivery. Atlassian offers free licenses of Bamboo to
projects that are open-source and public [5]. We currently utilize a Bamboo instance deployed as
part of the LinkSmart®14 ecosystem. The instance is accessible at LinkSmart Pipelines15. Bamboo is
connected to the GitLab server, listening to changes in the source codes. Currently we perform
polling every five minutes. Depending on the configuration, the developers will be notified about the
status of successful and/or failed builds by email.

• Database: The build server uses a MySQL16 database server to store build plans, logs, and other
service information.

• Reverse Proxy: The build server runs behind an Nginx reverse proxy serving external requests.
Requests are secured with SSL termination using an external component.

• Build Agent: A build agent is an Atlassian Bamboo Agent, responsible for performing builds and
different kinds of tests. Each agent can perform one job at a time. Currently, the system has one
agent in deployment but it can be easily replicated to allow parallelized builds and tests. The build
agents subscribe to a broker exposed by the build server to be informed about build jobs. Once a
job is published, agents start picking and executing tasks and publish the resulting logs and artefacts
to the build server. The execution of tasks is done in ephemeral build containers. For better isolation,
the build agent resides in another virtual machine (VM), which is separated from the VM other
services run on. This way, even if errors happen on the build agent, which corrupt the VM, other build
services would not be affected.

• Ephemeral Build Containers: The Docker containers are created for a specific job and removed
upon job completion. A job may create more than one container in order to perform integration
tests that require multiple running services. In any case, all containers related to a job are destroyed
after job success or failure. The ephemeral container approach helps to isolate build tasks from each
other. Furthermore, it ensures that tests are not influenced by each other or the hosting operating
system of the build system. The ephemeral build containers reside in the same VM as the agent.

• Issue Tracking: One aspect of continuous integration is to link build results into actions and
responsibilities. In the CPSwarm CI platform, we are looking into the possibility of integrating builds
with an issue tracking system so that developers are informed and assigned to builds that are failed
by their pushed codes or artefacts. The final realization of the issue tracking system will be reported
in future deliverables.

3.2.2 CI Platform Guidelines

As mentioned in the previous section, Bamboo has been used as the continuous integration tool. Bamboo is
a powerful and flexible system that allows different kinds of implementation based on different use cases. In
order to properly utilize Bamboo for continuous integration, it is essential to get familiar with the Bamboo
environment and terminology.

12 https://www.docker.com
13 https://www.atlassian.com/software/bamboo
14 LinkSmart® is a trademark used by Fraunhofer for IoT software utilities
15 https://pipelines.linksmart.eu
16 https://www.mysql.com

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 17 of 32

Figure 13. Multi-stage Bamboo plan [6]

At the highest level of abstraction, Bamboo divides the CI workflow into build and deployment projects. Build
projects contain instructions for building, testing, and publishing software snapshots. Deployment projects
include instructions for building and publishing releases as well deploying them on target systems.

A build project is a logical grouping for a set of build plans. We have created one project for CPSwarm. Build
projects are structured as below:

• Build plan: Plans are independent instructions with separate triggering mechanisms. Each plan
consists of one or more stages. Each implemented and testable CPSwarm component has at least
one plan. Plans are triggered manually, after changes detected in the source code, or following a
predefined schedule.

• Stage: Each stage within a plan represents a step within in the build process. A stage may contain
one or more jobs which Bamboo can execute in parallel. For example, there can be a stage for
compilation jobs, followed by one or more stages for various testing jobs, followed by a stage for
deployment jobs.

• Job: A group of tasks with shared requirements resulting in one or more artefacts.

• Task: A piece of work that is executed as part of a job. Check out source code, the execution of a
script, and a shell command are only few examples of tasks.

Figure 13 illustrates a build plan with three stages. Stage 1 consists of a single job with four tasks. Each task
leads to the next and a failure at any tasks will break the job and send a feedback. Stage 2 contains three
parallel jobs with single tasks all triggered after the successful completion of Stage 1. Failure of each job is
reported. Stage 3 is a manual stage that can be triggered after the success of Stage 1. This stage has one job
with a single task.

A deployment project allows defining tasks similar to build plans but designated for a specific target
environment. In other words, deployment projects consist of one or more environments, each with a single
job. The job includes a set of tasks in order to build and deploy the project to the target environment.
Deployment projects can be triggered manually or automatically after a successful build plan.

In CPSwarm, different components are separated into different plans because they are developed by
independent parties and managed in separate code repertories. Furthermore, during build-time tests, Docker
containers are utilized to contain components for better dependency isolation. A Docker17 container is a

17 https://www.docker.com/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 18 of 32

lightweight, stand-alone instance of a piece of software that includes everything needed to run it: code,
runtime, system tools, system libraries, and settings. Available for both Linux and Windows based apps,
containerized software always runs the same, regardless of the environment. Containers isolate software from
its surroundings, for example, differences in development and staging environments. They help to reduce
conflicts between teams running different software on the same infrastructure.

3.3 Integration Test Setup

This section presents the setup for integration tests regarding the CPSwarm project. Since we leverage
Docker for testing, the dockerization details are documented in 3.3.1. In 3.3.2, the component tests we
perform are demonstrated. In 3.3.3, the setup of all the Bamboo plans and their relationships are explained in
details. Finally, in 3.3.4, the results of integration tests are presented.

3.3.1 Dockerization of CPSwarm Components

Dockerization is the process of installing a software along with its dependencies into a Docker image. Such
Docker images are typically built using Dockerfiles. A Dockerfile is a text document that contains all the
commands a user could call on the command line to assemble an image. Using the command docker build
users can create an automated build that executes several command-line instructions in succession to build
an image from a Dockerfile. In this section, the dockerization details of the three CPSwarm components are
documented in each of the following sub-section, respectively.

3.3.1.1 Dockerization of Modelio and its CPSwarm Extension

The initial Modelling Tool, initial CPS Modelling Library, and initial Swarm Modelling Library are delivered as
the CPSwarm extension of Modelio. In order to build a container in which this extension can be tested,
Modelio must be installed inside the container. Currently, Modelio version 3.6.1 is compatible with the
CPSwarm extension. As the kernel of the Docker container is Linux-based, the Linux version of Modelio must
be used. Therefore, Modelio 3.6.1 for Ubuntu was chosen for installation in the Docker container.

Since Modelio is a GUI application which requires display support to run, a virtual display has to be created
inside the Docker container so that Modelio can run normally. For this purpose, an application called Xfvb18 is
used. Xvfb is an X server that can run on machines with no display hardware and no physical input devices. It
emulates a dummy framebuffer using virtual memory. With Xvfb, a dummy display can be created so that
Modelio can run inside a Docker container, even though there is no real physical display. For more details
about the dockerization process, please see Annex A: Dockerfile for Modelio.

3.3.1.2 Dockerization of FREVO

FREVO is a Java application which requires JDK 8 and Apache Ant19 to be built and run. To build the Docker
image, a JDK base image withant packages installed has been used. Furthermore, FREVO’s source code as
well as necessary test data are copied into the image. After that, FREVO is built and prepared using a set of
commands. During the testing phase, a predefined script executes the test cases inside the Docker container.
For more details about the dockerization process, please see Annex B: Dockerfile for FREVO.

3.3.1.3 Dockerization of Minisim

Minisim is a Java application developed with the help of Apache Maven20 build management tool. Apache
Maven is a software project management and comprehension tool. Based on the concept of a project object
model (POM), Maven can manage a project's build, reporting, and documentation from a central piece of
information. The dockerization process of Minisim involves the following steps: a proper Maven Docker
image is chosen as the base image. On top of that, Minisim’s source code as well as necessary test data is
copied into the image. After that, a Maven test command starts the build and test process. For more details
about the dockerization process, please see Annex C: Dockerfile for Minisim.

18 https://www.x.org/archive/X11R7.6/doc/man/man1/Xvfb.1.xhtml
19 http://ant.apache.org/
20 https://maven.apache.org/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 19 of 32

3.3.2 Component Testing

As stated in D3.7, the responsibility of formulating tests for each component belongs to the component
developers. As a result, unit tests were provided for different components by their respective developers.
These tests are integrated into the CI framework and run automatically to verify the correctness of each
component. Passing the tests of all components is the pre-condition for a further integration test. The details
of unit tests are documented in the following subsections:

3.3.2.1 CPSwarm Extension Component Tests

For the CPSwarm extension, component test cases written with the help of JUnit are provided as part of the
source code. The unit tests are managed with Maven and executed automatically, when the source code is
built by the CI tool.

3.3.2.2 FREVO Component Tests

For FREVO, LAKE has provided the test suites as well as test scripts to perform component tests. In the test
suites, multiple optimization test cases are provided with pre-defined parameters for problem definition,
algorithm representations, ranking algorithms, etc. By executing the test scripts, FREVO runs the optimization
process against these test cases and generate hash files, which represent the outcome of these optimization
processes. These hash files are compared to a set of pre-generated hash files. Because the test cases also
specify the random seeds, the optimization results are deterministic despite the random evolution process
involved. This means, if everything is implemented correctly, the newly generated hash files match the pre-
generated ones. As a result, a test is passed only when the hash files generated by the tests match those pre-
generated ones.

3.3.2.3 Minisim Component Tests

For Minisim, unit test cases written with the help of JUnit are provided as part of the source code. Similar to
the CPSwarm extension, the Minisim unit tests are performed using Maven. The tests involve verifying the
internal logic of the Minisim simulator as well as the API interface of the MQTT client wrapper. The
component test is executed automatically, when the source code is built by the CI tool.

3.3.3 Integration Testing

The integration test cases describe how the test should be carried out in CPSwarm when components,
dependencies, and test cases are integrated. The integration test cases focus on whether the flow of data and
control from one component to the other takes place as intended. Hence, integration test cases demonstrate
scenarios where one component is being called from another in order to test the overall application
functionality to make sure the application works when the different components are brought together.

In order to perform integration tests, the components that are combined to form the CPSwarm workbench,
namely Modelio, Frevo, Minisim, and associated scripts are integrated into a pipeline. The pipeline is a set of
Bamboo CI plans which are executed by Bamboo whenever changes in code are detected. The test plans are
described in the following section.

3.3.3.1 Test Plans Setup in Bamboo

This section describes the Bamboo CI plans that form the testing pipeline.

Modelling Tool - Modelio CPSwarm Extension Build and Test

The goal of this plan is to build the CPSwarm extension for Modelio from source. This plan consists of two
stages and each stage consists of multiple tasks, which are executed in sequence. They are detailed below.

Stage 1: Build Modelio CPSwarm Extension from source (Figure 14)

The following tasks are executed within this stage:

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 20 of 32

1. The source code of CPSwarm extension is checked out from the Modelio Forge into the current
stage.

2. A Docker container with Maven base is created. The CPSwarm extension is created and packaged in
this container.

After the execution of the tasks, the packaged artefact is exported for later use by other plans.

Figure 14 - CPSwarm Extension Build Plan (Stage 1)

Stage 2: Build Container for CPSwarm Extension testing within Modelio (Figure 15)

Before the execution of tasks, the aforementioned packaged artefact are imported into this stage. The
following tasks are then executed:

1. Necessary files (a Modelio reference project, test scripts, etc.) for this stage is checked out from a
GitLab repository into the current stage.

2. The imported CPSwarm extension artefact is copied to a proper place under the directory of the
Modelio reference project.

3. A Docker image created as described in 3.3.1.2.

4. A Docker container is instantiated from the created image. In this container, test scripts are executed
and files are generated for integration test with FREVO.

After the execution of all tasks, the generated files are exported for later use by other plans.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 21 of 32

Figure 15 - CPSwarm Extension Build Plan (Stage 2)

Optimization Tool - FREVO Initialization

The goal of this plan is to generate hash files, which serve as reference for FREVO’s component test later on.
Due to the technical characteristic of this test, these files need to be generated on the same machine as the
one on which the component test runs. As a result, this plan is configured to run only once in the CI setup
phase, instead of running it every time new code is committed. This plan consists of one stage.

Stage 1: Initialization (Figure 16)

The following tasks are executed within this stage:

1. The reference source code of FREVO is checked out from its repository into this stage.

2. A Docker image is created with the reference FREVO source code included. During build time, the
source code is compiled with Ant.

3. A Docker container is then instantiated from the newly created Docker image. Commands and scripts
are executed to generate the hash files. Those hash files are the reference files for the subsequent
FREVO component test.

After the execution of the tasks, the hash files are exported as artefacts for later use by other plans.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 22 of 32

Figure 16 – FREVO Initialization Plan (Stage 1)

Simulation Environment - Minisim Build and Test

The goal of this plan is to build Minisim and run its component test. This plan consists of two stages. In each
stage, multiple tasks are executed in sequence. They are explained below.

Stage 1: SimulationWrapper Test (Figure 17)

The following tasks are executed within this stage:

1. The source code of SimulationWrapper is first checked out from the GitLab repository into this stage.

2. After the checkout is completed, a Docker image is created as described in 3.3.1.3 with the
downloaded source code included.

3. As the test involves interaction with the MQTT broker, a Docker container with Mosquitto MQTT
broker installed is instantiated and run.

4. A Docker container is then instantiated from the newly created Docker image. Commands and scripts
are executed within this container to build and run the component test of SimulationWrapper.

After executing the tasks, the built artefact from task 4 is exported for later use in the next stage.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 23 of 32

Figure 17 - Minisim Build and Test Plan (Stage 1)

Stage 2: WrappedMinisim Test (Figure 18)

Before executing the tasks, the artefact exported from the previous stage is imported into this stage. The
following tasks are then executed:

1. The source code of WrappedMinisim is checked out from the GitLab repository into this stage.

2. After the checkout is completed, the imported artefact is put into the proper place under the source
code directory. This artefact is needed for the build process.

3. A Docker image is created as described in 3.3.1.3 with the downloaded source code included.

4. As the test involves interaction with MQTT broker, a Docker container with Mosquitto MQTT broker21
is instantiated and run.

5. A Docker container is then instantiated from the newly created Docker image. Commands and scripts
are executed within this container to build and run the component test of Minisim.

21 https://mosquitto.org/

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 24 of 32

Figure 18 - Minisim Build and Test Plan (Stage 2)

Optimization Tool - FREVO Build and Test

The goal of this plan is to build FREVO and run its component test. However, since FREVO resides between
Modelio and Minisim, this plan also serves as an integration test for all three components. In this plan, files
generated by the “Modelling Tool - Modelio CPSwarm Extension Build and Test” are imported as part of
FREVO’s source code for compilation. This serves as an integration test between Modelio and FREVO. After
successful compilation, a test process similar to the aforementioned “Optimization Tool - Frevo Initialization”
plan is performed. However, instead of checking out the reference source code of FREVO, the newly
committed FREVO source code for CPSwarm is used. This test process involves the participation of
WrappedMinisim. As a result, it serves as the integration test between FREVO and Minisim. This plan consists
of only one stage.

Stage 1: Build and Run Test Suites (Figure 19)

Within this plan, the following tasks are executed in sequence:

1. The source code of FREVO is first checked out from the GitLab repository into this plan.

2. The artefacts exported from plan “Optimization Tool - Frevo Initialization” are imported to the
Bamboo agent.

3. The artefacts exported from plan “Modelling Tool - Modelio CPSwarm Extension Build and Test” are
imported into this stage and put into the source code directory of Frevo.

4. After the download is completed, a Docker image is created as described in 3.3.1.2. During the image
build process, FREVO is compiled into executable binaries.

5. A container with WrappedMinisim is run.

6. As the test involves interaction with the MQTT broker, a Docker container with Mosquitto MQTT
broker is instantiated and run.

7. A Docker container is instantiated from the newly created Docker image. Commands and scripts are
executed to run the test suite of FREVO, which test the integration between FREVO and Minisim.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 25 of 32

Figure 19 – FREVO build and test plan

3.3.3.2 Trigger Relationships between Test Plans

In Bamboo, the trigger condition for each plan can be configured separately. A plan can be triggered to run
by detection of changes in a repository, or by the execution of another plan. The trigger relationship
between the aforementioned plans is illustrated in Figure 20.

Figure 20 - Trigger relationship between plans

In this diagram, the arrow is pointing from a triggering element to the triggered element. It can be seen that
the plan “Modelling Tool – Modelio CPSwarm Extension Build and Test” is triggered when it detects changes
in the CPSwarm extension repository. Similarly, “Simulation Environment – Minisim Build and Test” and
“Optimization Tool – Frevo Build and Test” plans are triggered by the changes in Minisim and Frevo
repositories, respectively. This ensures that whenever changes happen in a repository, the correspondent
element will be rebuilt and tested to verify correctness of that single component. The execution of plan
“Modelling Tool – Modelio CPSwarm Extension Build and Test” and plan “Simulation Environment – Minisim

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 26 of 32

Build and Tests” both trigger the plan “Optimization Tool – Frevo Build and Test”. This is to ensure that once
one of these components is rebuilt, the integration test is run to verify the integration of all components.

3.3.4 Integration Test Results

As demonstrated in Figure 21, all integration tests have passed. As a result, the conclusion can be drawn that
all CPSwarm components are integrated successfully for the first phase of development within the project.

Figure 21 - Integration Test Results

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 27 of 32

4 Conclusions

This deliverable is a report documenting the implementing of the Initial CPSwarm Workbench and associated
tools as well as the integration result of the first development phase in project CPSwarm. In this document,
the available initial components and their interfaces were reviewed. After that, technical details regarding the
setup of integration tests were presented. In 3.2, the deployment details of the CI tool Atlassian Bamboo
were introduced. In 3.3, the dockerization of components, the setup of integration test cases, and the
integration results were demonstrated. At this point, the integration tests pass, which indicates that
integration of the first phase components is successful.

In the upcoming months, development of other CPSwarm components will start and the initial components
will also be revised and modified according to newly identified requirements. The next integration phase will
end in M22 of CPSwarm project. By the end of M22, the deliverable 3.5, which is an updated version of this
deliverable, will be submitted. D3.5 will further document more comprehensive integration results of the
CPSwarm components.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 28 of 32

Acronyms

Acronym Explanation

CI Continuous Integration

BPMN Business Process Model and Notation

MARTE Modeling and Analysis of Real-time and Embedded systems

FREVO Framework for evolutionary design

API Application Programming Interface

VM Virtual Machine

List of figures
Figure 1 - Relationship of this document with other deliverables and Tasks .. 4
Figure 2 - CPSwarm system architecture extracted from D3.1 (Components to be integrated are highlighted in red
rectangles. The annotations show the mapping between components in the diagram to the components defined in
deliverables) ... 5
Figure 3 - Modelio graphical user interface ... 6
Figure 4 - Subcomponent diagram of the Modelling Tool .. 7
Figure 5 Model to represent a swarm member with BEECLUST .. 8
Figure 6 Caption missing .. 9
Figure 7 - FREVO graphical user interface .. 10
Figure 8 - Stage simulator .. 11
Figure 9 - Gazebo simulator .. 11
Figure 10 Integration Test Set Up ... 12
Figure 11 - Interfaces between the CPSwarm initial components .. 13
Figure 12. CPSwarm Initial Continuous Integration (CI) Platform. Two independent networks (yellow) consisting of virtual
machines (blue), hosting containerized applications. .. 15
Figure 13. Multi-stage Bamboo plan [6] .. 17
Figure 14 - CPSwarm Extension Build Plan (Stage 1).. 20
Figure 15 - CPSwarm Extension Build Plan (Stage 2).. 21
Figure 16 – FREVO Initialization Plan (Stage 1) ... 22
Figure 17 - Minisim Build and Test Plan (Stage 1) ... 23
Figure 18 - Minisim Build and Test Plan (Stage 2) ... 24
Figure 19 – FREVO build and test plan ... 25
Figure 20 - Trigger relationship between plans .. 25
Figure 21 - Integration Test Results ... 26

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 29 of 32

References

[1] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.

[2] H. H. Thomas Schmickl, “Bio-inspired Computing and Networking,” CRC Press, 2011, pp. 95-
137.

[3] X.-S. Yang, “Firefly Algorithms for Multimodal Optimization,” Stochastic Algorithms: Foundations
and Applications, pp. 169-178, 2009.

[4] A. Sobe, I. Fehévári and W. Elmenreich, “FREVO: A tool for evolving and evaluating self-
organizing systems,” in Proceedings of the 1st International Workshop on Evaluation for Self-
Adaptive and Self-Organizing Systems, Lyon, 2012.

[5] Atlassian, “Atlassian Bamboo Open Source Project License Request,” 11 2017. [Online].
Available: https://www.atlassian.com/software/views/open-source-license-request.

[6] Atlassian, “Bamboo Best Practice - Using Stages,” 11 2017. [Online]. Available:
https://confluence.atlassian.com/bamboo/bamboo-best-practice-using-stages-388401113.html.

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 30 of 32

Annex A: Dockerfile for Modelio
FROM ubuntu:16.04

MAINTAINER Junhong LIANG <junhong.liang@fit.fraunhofer.de>

ARG MODELIO_PKG_NAME=modelio

Install Modelio as Debian package
Beside, xvfb is installed to create a virtual display for Modelio

RUN apt-get update && \
 apt-get install -y wget && \
 mkdir /modelio && \
 wget -O /modelio/${MODELIO_PKG_NAME}.deb https://www.modelio.org/download/send/24-
modelio-361/91-modelio-361-debian-ubuntu-64-bit.html && \
 apt install -y /modelio/${MODELIO_PKG_NAME}.deb && \
 apt-get install -y xvfb

To run test, you also need to mount the modelio project and the test scripts to the container.
As example, let's assume we have a directory /Docker/modelio on host, which contains a
project folder called EmergencyExitRos
as well as a test script launchGeneration.py. In this case, you can run your container like this:

Docker run --name modelio -v /Docker/modelio:/modelio modelio_image

then the following command would create a virtual display with Xvfb and then generate files
according to the project setting

CMD Xvfb :1 -screen 0 1024x768x16 & DISPLAY=:1.0 modelio-open-source3.6 -consoleLog -
workspace /modelio -project EmergencyExitRos -batch /modelio/launchGeneration.py

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 31 of 32

Annex B: Dockerfile for FREVO

FROM openjdk:8-jdk-slim

RUN apt update && \
 apt install -y ant

RUN addgroup --gid 1000 frevo && \
 adduser --uid 1000 --ingroup frevo --system frevo

COPY repo/frevo /home/frevo
RUN chown -R frevo:frevo /home/frevo
RUN rm /home/frevo/testsuite/hashes/*
WORKDIR /home/frevo

USER frevo
RUN ant build
RUN java -jar createscripts.jar

mount to export hash files
VOLUME /home/frevo/testsuite/hashes

WORKDIR testsuite

Remove piping of logs
RUN sed -i 's/>\/dev\/null 2>&1//g' testsuite.sh
ENTRYPOINT ["./testsuite.sh"]

Running locally:
git clone https://git.repository-pert.ismb.it/ftavakolizadeh/ContinuousIntegration.git
git clone https://git.repository-pert.ismb.it/mrappaport/cpswarm.git repo
docker build -t frevo-test .
docker run -v $(pwd)/hashes:/home/frevo/testsuite/hashes --rm frevo-test -renew
docker run -v $(pwd)/hashes:/home/frevo/testsuite/hashes --rm frevo-test

Deliverable nr.
Deliverable Title

Version

D3.4
Initial CPSwarm Workbench and associated tools
1.0 - 08/12/2017

Page 32 of 32

Annex C: Dockerfile for Minisim

FROM maven:3-jdk-8-alpine

WORKDIR /home
VOLUME /home

ENTRYPOINT ["mvn", "test"]

Running locally:
SimulationWrapper
git clone https://git.repository-pert.ismb.it/CPSwarm/SimulationWrapper.git
docker build -t simulation-wrapper .
docker run -v $(pwd)/SimulationWrapper:/home simulation-wrapper -
Dtest_broker=tcp://example.com:1883
WrappedMinisim
git clone https://git.repository-pert.ismb.it/CPSwarm/WrappedMinisim.git
docker build -t wrapped-minisim .
docker run -v $(pwd)/WrappedMinisim:/home wrapped-minisim -
Dtest_broker=tcp://example.com:1883

	Document History
	Internal Review History
	Table of Contents
	1 Introduction
	1.1 Scope
	1.2 Related documents
	1.2.1

	2 CPSwarm Initial Components
	2.1 Initial Modelling Tool
	2.2 Initial CPS Modelling Library
	2.3 Initial Swarm Modelling Library
	2.4 Initial Simulation Environment

	3 CPSwarm Initial Components Integration
	3.1 Component Integration and Interfaces
	3.1.1 Library API
	3.1.2 Optimization Tool API
	3.1.3 Simulator API

	3.2 Continuous Integration (CI) Platform
	3.2.1 CI Platform Deployment
	3.2.2 CI Platform Guidelines

	3.3 Integration Test Setup
	3.3.1 Dockerization of CPSwarm Components
	3.3.1.1 Dockerization of Modelio and its CPSwarm Extension
	3.3.1.2 Dockerization of FREVO
	3.3.1.3 Dockerization of Minisim

	3.3.2 Component Testing
	3.3.2.1 CPSwarm Extension Component Tests
	3.3.2.2 FREVO Component Tests
	3.3.2.3 Minisim Component Tests

	3.3.3 Integration Testing
	3.3.3.1 Test Plans Setup in Bamboo
	3.3.3.2 Trigger Relationships between Test Plans

	3.3.4 Integration Test Results

	4 Conclusions
	5
	Acronyms
	List of figures
	References
	Annex A: Dockerfile for Modelio
	Annex B: Dockerfile for FREVO
	Annex C: Dockerfile for Minisim

