

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D6.5 – INITIAL INTEGRATION OF EXTERNAL SIMULATORS

Deliverable ID D6.5
Deliverable Title Initial Integration of External Simulators

Work Package WP6 – Simulation and Performance Prediction

Dissemination Level PUBLIC

Version 1.0

Date 30/06/2018

Status Final

Lead Editor Davide Conzon (ISMB)

Main Contributors Arthur Pitman (UNI-KLU), Miquel Cantero, Angel Soriano
(ROBOTNIK), Omar Morando (DIGISKY)

Published by the CPSwarm Consortium

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 2 of 49

Document History

Version Date Author(s) Description
0.1 2017-03-26 Davide Conzon (ISMB) First Draft with TOC
0.2 2018-04-09 Davide Conzon (ISMB) First sections

0.3 2018-05-25

Davide Conzon (ISMB),
Arthur Pitman (UNI-KLU),

Miquel Cantero, Angel
Soriano (ROBOTNIK)

Integration of the simulation descriptions

0.4 2018-06-09 ISMB Completed introduction, conclusions and almost
completed the implementation section

0.5 2018-06-13

Davide Conzon (ISMB),
Arthur Pitman (UNI-KLU),

Omar Morando
(DIGISKY)

Revised some sections and completed the section
about implementation

0.6 2018-06-14 Davide Conzon (ISMB),
Arthur Pitman (UNI-KLU)

Some minor revision about the interaction between
the components

0.7 2018-06-22 Davide Conzon (ISMB) Integrated the reviews of FIT and UNI-KLU
1.0 2018-06-30 Davide Conzon (ISMB) Final version

Internal Review History

Review
Date Reviewer Summary of Comments

2018-06-22
Sisay Chala

(FRAUNHOFER) Few modifications and comments.

2018-06-26 Arthur Pitman (UNIKLU) Minor comments.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 3 of 49

Table of Contents

Document History .. 2
Internal Review History .. 2
Table of Contents ... 3
1 Executive Summary .. 6
2 Introduction .. 7

2.1 Scope .. 8
2.2 Background .. 8
2.3 Document Organization .. 9
2.4 Related documents.. 9

3 Simulation and Optimization Environment in the CPSwarm Workbench ... 10
3.1 API .. 11
3.1.1 SOO and Optimization Tool interaction ... 11
3.1.2 SOO and Simulation Managers interaction ... 11
3.1.3 Optimization Tool and Simulation Managers interaction .. 11

4 ROS-based robotics simulation tools ... 12
4.1 Stage ... 12
4.1.1 Control interface ... 13
4.1.2 Simulation settings .. 13
4.1.3 Implementation of the CPS behavior ... 13
4.1.4 Integration with Ground Control Stations .. 13
4.1.5 Other configuration parameters .. 13
4.2 Gazebo ... 14
4.2.1 Control interface ... 14
4.2.2 Simulation settings .. 15
4.2.3 Implementation of the CPS behavior ... 17
4.2.4 Integration with Ground Control Stations .. 17
4.2.5 Other configurations ... 18

4.3 V-REP .. 19
4.3.1 Control interface ... 19
4.3.2 Simulation settings .. 20
4.3.3 Implementation of the CPS behavior ... 21
4.3.4 Integration with Ground Control Stations .. 21
4.3.5 Other configuration parameters .. 21
4.4 ARGoS ... 21
4.4.1 Control interface ... 22
4.4.2 Simulation settings .. 22
4.4.3 Implementation of the CPS behavior ... 23
4.4.4 Integration with Ground Control Stations .. 23
4.4.5 Other configuration parameters .. 24

4.5 jMAVSim ... 24

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 4 of 49

4.5.1 Control interface ... 24
4.5.2 Simulation settings .. 24
4.5.3 Implementation of the CPS behavior ... 24
4.5.4 Integration with Ground Control Stations .. 24
4.5.5 Other configuration parameters .. 24

4.6 STDR ... 25
4.6.1 Control interface ... 25
4.6.2 Simulation settings .. 26
4.6.3 Implementation of the CPS behavior ... 26
4.6.4 Integration with Ground Control Stations .. 26
4.6.5 Other configuration parameters .. 26

5 Simulation Virtual Machine .. 27
6 Implementation and Integration .. 28

6.1 Data formats of the simulation interfaces in the CPSwarm Workbench .. 28
6.1.1 JSON .. 28
6.1.1.1 StartOptimization .. 28
6.1.1.2 GetProgress and CancelOptimization ... 28
6.1.1.3 OptimizationResult ... 28
6.1.1.4 OptimizationStarted, OptimizationCancelled and OptimizationProgress .. 29
6.1.1.5 RunSimulation .. 29
6.1.2 XML .. 29
6.1.2.1 Optimization Tool configuration .. 29
6.1.2.2 Optimization Tool result ... 29
6.1.3 SDF ... 30
6.1.4 Wrapper ... 31
6.1.4.1 Main() ... 31
6.1.4.2 Sync() .. 31
6.1.4.3 SyncUpdate() ... 31
6.1.4.4 simStep() ... 31
6.1.5 Candidate .. 31
6.1.5.1 getOutput(float netInput[],long inputsize) ... 31
6.2 Integration of FREVO as an Optimization Tool .. 32
6.3 SOO ... 32
6.3.1 Listeners ... 32
6.3.1.1 ConnectionListenerImpl ... 32
6.3.1.2 MessageEventCoordinatorImpl ... 32
6.3.1.3 PacketListenerImpl.. 33
6.4 Simulation Manager .. 33
6.4.1 Listeners ... 33
6.4.1.1 ConnectionListenerImpl ... 33
6.4.1.2 AbstractFileTransferListener .. 33
6.4.1.3 PresencePacketListener .. 34

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 5 of 49

6.5 Gazebo Simulation Manager ... 34
6.5.1.1 FileTransferListenerImpl.. 34

7 Conclusions ... 35
Acronyms ... 36
List of figures .. 36
List of tables .. 37
References ... 37
ANNEX A – Optimization Tool Configuration ... 38
ANNEX B – Optimization Tool Result ... 39
ANNEX C – SDF world example .. 40
ANNEX D – SDF environment model example ... 41
ANNEX E – SDF Object model example... 42
ANNEX F – JSON for StartOptimization... 45
ANNEX G – JSON for GetProgress and CancelOptimization ... 46
ANNEX H – JSON OptimizationResult .. 47
ANNEX I – JSON OptimizationReply ... 48
ANNEX J – JSON RunSimulation... 49

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 6 of 49

1 Executive Summary

This deliverable, “D6.5 Initial Integration of External Simulators”, gives a detailed description of how the
external simulators have been initially integrated in the CPSwarm Workbench. This deliverable continues from
deliverable D6.1 - Initial Simulation Environment in which, a first survey of available simulators was presented.
First, this deliverable outlines the architecture designed in the CPSwarm Workbench for the Simulation and
Optimization Environment. Then, the authors analyze the features provided by the most interesting
simulators among the ones collected in D6.1, focusing on how they can be integrated and controlled. Then,
the authors describe the required simulation environment built to do the first tests. Finally, the deliverable
describes the software and the data formats designed and implemented to integrate the simulators in the
workbench.

This deliverable reports on the results of Task 6.4 - External simulators integration.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 7 of 49

2 Introduction

The deliverable D6.1, released in M9, presented the state-of-the-art both of the simulators and of the
standard data formats usually leveraged to exchange data in this context. Furthermore, it introduced the first
version of the distributed Simulation and Optimization Environment, based on the broker-based approach
(see Figure 1) designed for the CPSwarm Workbench.

Figure 1 – The broker-based approach of the CPSwarm Worbench

Deliverable D6.1 forms the base of the work described in this document. Indeed, the state-of-the-art of the
simulators has been leveraged to choose the more interesting simulators to be used in the CPSwarm
Workbench, evaluating them in terms of openness, diffusion and features provided. These considerations
have led to the selection of solutions based on the Robotic Operating System (ROS). Another main reason to
choose this type of simulator is the ongoing work in Task 7.1 – CPS Abstraction Library, where the CPSwarm
Consortium has decided to use ROS as the Cyber Physical System (CPS) Abstraction Library that abstracts the
main functions of the CPSs, integrated in the CPSwarm Workbench. ROS has been chosen because is an
open-source solution, widely supported by several robotics platforms (including the ones used in the
CPSwarm scenarios), which provides modularity and interoperability. Indeed, ROS allows to build software
solutions where several modules communicate, also if written in different programming languages (please,
refer to D7.1, for the details about ROS and its role in the CPSwarm Workbench), Furthermore, the state-of-
the-art standards used for the exchange of data in the context of distributed simulation has been used, in
combination with the analysis of the formats already leveraged by the ROS simulators, to choose the data
format for the CPSwarm Workbench. Finally, the analysis of the issues identified in the broker-based
approach proposed in D6.1 has led to the design of the Simulation and Optimization Environment, described
in this document, which can be used both to test a swarm algorithm, or to optimize an evolutionary
algorithm using an Optimization Tool, e.g. FRamework for Evolutionary Design (FREVO)1.

The deliverable starts by describing the distributed architecture, based on the eXtensible Messaging and
Presence Protocol (XMPP)2 protocol, designed for the Simulation and Optimization Environment in the
CPSwarm Workbench, describing the features introduced to improve the previous approach and the roles of
the main components of this approach: the centralized Simulation and Optimization Orchestrator (SOO), the
distributed Simulation Managers and the Optimization Tool. Then, the document presents a detailed analysis
of the main ROS-based simulators, specifically, focusing on how they can be controlled and configured and
the formats they use for the models and the CPS behavior. The results of this analysis have led the CPSwarm
Consortium to build a Linux-based virtual machine, with all the software needed for a complete Simulation

1 http://frevo.sourceforge.net/
2 https://xmpp.org/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 8 of 49

Environment for ROS-based CPSs. Specifically, the Gazebo simulator3 has been chosen for these first tests,
because it provides all the features required and an open Application Programming Interface (API) both for
the configuration and the control through ROS. Then, the document outlines the developments done in the
task T6.4 to integrate the external simulators, implementing the proposed distributed approach, based on
XMPP. Specifically, the document focuses on the interactions among the main components, involved in the
simulation and optimization process, describing the API defined, the data format used and the
implementation done for the interaction of these components. Finally, the document describes the
implementation done to integrate the Gazebo simulator in the CPS Workbench, configuring it and using it to
simulate a swarm of CPSs in the proposed scenarios.

2.1 Scope

This deliverable is focused on simulation environments for robotics behavior (specifically rovers and drones).
Many other simulators exist, such as traffic simulators, like Simulation of Urban MObility (SUMO)4, or network
simulators (like omnNET++5), but they are out of scope in this deliverable. Furthermore, only the software
components and interfaces used to integrate the external simulators are completely covered. The other
components of the Simulation Environment and their interfaces are only briefly explained, because they are
the main focus of D6.1 and of D6.2 - Final Simulation Environment due in M28. Finally, this deliverable
doesn’t describe how the fitness function is used to calculate the fitness value for the simulation, since this is
scope of the deliverable D6.3 -Initial CPS System design optimization and Fitness function design guidelines.

2.2 Background

CPSwarm is based on the conceptual architecture shown in Figure 2. One of the base components is the
Models library, which collects formal representations of CPSs, behavior routines, swarm algorithms and
human-to-CPS interaction patterns. This library will be one of the first model libraries for designing swarms
of CPS. Building upon these models, the project partners will develop a design, simulation and performance
prediction Workbench, namely the CPSwarm Workbench, which will enable CPS engineers to collaborate and
assemble model-based descriptions of CPS systems, with humans in the loop.

3 http://gazebosim.org
4 http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
5 https://www.omnetpp.org/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 9 of 49

Figure 2 - CPSwarm concept

The outcome of the first, model-based, design phase will be a swarm, potentially heterogeneous, of CPSs and
their behavioral models. Then, the CPSwarm Workbench enables simulation of the overall emerging system
behavior and evaluation of its performances. The simulation includes complex real data, and/or
hardware/human in the loop solutions where needed. Co-simulation is also considered, where needed, by
integrating a set of selected simulation engines that allow the simulation of different CPS aspects. A
dedicated Simulators Integration Layer is part of the CPSwarm solution to decouple the CPSwarm Simulation
and Optimization Environment from engine-specific, control commands and data formats.

2.3 Document Organization

The rest of this document is organized as follows: Firstly Section 3 briefly introduces the Simulation and
Optimization Environment designed in task T6.1 - Simulation Environment and T6.2 - Simulation control and
CPS System design optimization. Then, the Section 4 presents the analysis of the simulation engines to be
integrated in the CPSwarm Workbench. Section 5 describes the Simulation Environment built to test the
chosen simulators. Finally, Section 6 presents the implementations done to integrate the simulators in the
workbench, in terms of data format defined and software components developed.

2.4 Related documents

ID Title Reference Version Date
D6.1 Initial Simulation Environment D6.1 6.0 M9
D6.2 Final Simulation Environment D6.2 1.0 M28
D7.1 CPS Abstraction Library D7.1 1.0 M18

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 10 of 49

3 Simulation and Optimization Environment in the CPSwarm Workbench

Figure 3 - CPSwarm reference architecture

The external simulators are integrated in the CPSwarm Wokbench architecture (Figure 3), using a broker-
based distributed approach, designed in Tasks 6.1 and 6.2. This deliverable will briefly describe this approach,
detailing only the interaction between the Optimization Tool and the simulation components. Indeed, the
detailed description of the whole approach (which is an evolution of the one proposed in D6.1) will be
included in D6.2, to be submitted in M28.

The current approach followed to design the Simulation and Optimization Environment shares, with the
approach described in D6.1, the concept to have a distributed architecture, with several simulation engines
distributed on different machines. The main differences introduced have the goal to address the issues seen
in the previous solution (Micha Rappaport, 2018), which limit the performance of that solution, like the not-
efficient discovery mechanism and the high number of messages exchanged between the Optimization Tool
and the simulators during the simulation.

In the new architecture, there is a centralized component, called the SOO, which orchestrates the work of the
Optimization Tool and the distributed simulators, each one wrapped by a Simulation Manager.

The XMPP protocol will be used instead of Message Queue Telemetry Transport (MQTT), for the
communication among these components, allowing some core features6 to be used, such as unique
identifiers, presence mechanism and one-to-one chat messages; or some of the protocol extensions, like file
transfer7 and publish/subscribe8. Furthermore, at the same time, it will be possible to leverage all the security
features natively provided by the protocol (Conzon, 2012).

One way in which XMPP has been leveraged to improve the architecture has been in the refactoring of the
discovery of the distributed Simulation Managers. The discovery mechanism used in the previous approach
introduced delays, due the time spent by the Simulation Managers to handle the discovery requests, every
time a new simulation was needed. For this reason, in the new approach the previous solution has been

6 https://xmpp.org/rfcs/rfc6120.html
7 https://xmpp.org/extensions/xep-0096.html
8 https://xmpp.org/extensions/xep-0060.html

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 11 of 49

replaced with a more scalable mechanism, where the Simulation Managers announce themselves to the SOO
once they are available, leveraging the XMPP presence mechanism.

Finally, in the approach described in D6.1, the simulation of the controller was done, by exchanging
sensor/actuator messages between the simulator and the controller, which was running in the Optimization
Tool. This increased the number of messages and decreased performances. To address this issue. In the new
version, the complete controller is sent to the Simulation Manager and it is evaluated in the simulator,
sending back only the fitness score, limiting the number of messages exchanged.

3.1 API

This section describes the main API among the components of the Simulation and Optimization Environment.

3.1.1 SOO and Optimization Tool interaction

At the start the SOO and the Optimization Tool connect to each other, to exchange presences. Then, the SOO
sends a StartOptimization message (see Section 6.1.1.1) to the Optimization Tool, when a new optimization
process must be started. The Optimization Tool answers this request by sending an OptimizationStarted
message (see Section 6.1.1.4), indicating if all is ok or if there has been some error. If all is OK, the SOO sends
the Optimization Tool a configuration file (see Section 6.1.2.1). During the optimization process, the SOO can
send messages to the Optimization Tool, via chat, to control the process. GetProgress or CancelOptimization
(see Section 6.1.1.2), can be used respectively to get the status of the optimization and to stop it. The
Optimization Tool answers these messages with an OptimizationProgress or OptimizationCancelled reply (see
Section 6.1.1.4). When an optimization process is finished, the Optimization Tool sends the optimization
result to the SOO (see Section 6.1.2.2).

3.1.2 SOO and Simulation Managers interaction

Every time a Simulation Manager starts, it adds the SOO to its roster and then publishes a presence with the
server info in the status (the format is the one described in D6.1 as server). When the SOO receives this
presence, it adds the Simulation Manager to the available ones and it stores the info of that manager. In the
same way, when the SOO receives an unavailable notification from one Simulation Manager, it removers this
from the list of the available ones. The SOO sends, using the XMPP file transfer, the files needed to configure
the simulation, this can be done when a new simulation must be started or when a new optimization process
starts (in this case, it contains the files that will need to be used in all the simulations, excluding the
candidate, which change for each simulation run). If the simulation doesn’t require optimization, the SOO can
send a RunSimulation message (see Section 6.1.1.5), to the Simulation Manager also, to directly start a
simulation.

3.1.3 Optimization Tool and Simulation Managers interaction

The Optimization Tool sends, using the file transfer, the candidate to be used for that simulation to the
Simulation Manager and then a RunSimulation message to start it. If the Simulation Manager is not already
busy, it starts the simulation and answers when it is finished by sending an OptimizationResult message (see
Section 6.1.1.3) to the Optimization Tool, indicating the fitness value calculated, otherwise, it indicates that it
is not available.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 12 of 49

4 ROS-based robotics simulation tools

The deliverable D6.1 contains an analysis of the state-of-the-art of simulation tools. Based on this analysis
and according to the activities ongoing in task T7.1 - CPSwarm Abstraction Library, where the Consortium has
chosen to base the CPSwarm Abstraction Library on ROS, simulation tools, which support the ROS framework
are considered in detail in this document, namely Stage9, Gazebo, V-REP10, ARGoS11, jMAVSim12 and STDR13.

Specifically, this section presents an analysis of the robotic simulators that can be used in the CPSwarm
Workbench, focusing on the way they can be controlled and configured and the formats they use for the
models and the behavior.

The first objective of this analysis is to understand, which simulators are suitable for integration in the
CPSwarm Workbench and thus the ones, which fulfill requirements such as:

• ROS integration.

• Possibility to control the simulator from an external process, through command line or some sort of
API.

• Open format to describe the CPS and environment models.

• Possibility to describe the CPS behavior.

• (Optional) possibility to interact with a Ground Control Station during the simulation.

The results of this analysis, presented in this section will be used in four different ways:

• To choose the first simulators to be integrated in the CPSwarm Workbench, based on the features
provided and the ease of integration.

• To build a first Simulation Environment to be used for testing (see Section 5).

• To choose among the data format presented in the deliverable D6.1, for the integration of external
simulators in the CPSwarm Workbench (see Section 6.1).

• The information collected, will form the basis for the development of the respective Simulation
Managers (see Section 6).

4.1 Stage

Stage is a low-fidelity two-dimensional simulator that can be used with a variety of robotic platforms and
sensors. It supports the concurrent simulation of many robots, allowing swarms of potentially hundreds of
thousands of robots to be simulated at the same time (Staranowicz, 2011). Stage can be used as a standalone
application that loads a robot control program from a user-defined library, a ROS-based simulation tool and
as a plugin for Player (libstageplugin). Stage is available for Linux, macOS and Windows.

9 http://rtv.github.io/Stage/
10 http://www.coppeliarobotics.com/
11 http://www.argos-sim.info/
12 https://pixhawk.org/dev/hil/jmavsim
13 http://wiki.ros.org/stdr_simulator

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 13 of 49

4.1.1 Control interface

Stage is a part of two projects the Player Project (Player/Stage/Gazebo) and ROS. In ROS, first a Stage
controller need to be compiled using the command:

rosmake stage_controllers

Then, the simulation can be started by:

rosrun stage stageros `rospack find stage_controllers`/world/CONTROlER_NAME.world

where, the stageros node wraps Stage simulator, via libstage, then Stage simulates a world as defined in a
world file.

4.1.2 Simulation settings

Stage simulates a scenario or a world that is defined in a world file, as mentioned above. Many sample world
files can be found in the /world subdirectory in the ros_stage package. Each file contains the complete set of
information relevant to a scenario such as obstacles and robots, as well as environment parameters, and
details of the robotic platforms and sensors. A top-down black and white png image is used to specify the
initial location of the obstacles in the environment.

4.1.3 Implementation of the CPS behavior

CPS behavior can be implemented by writing C++ or Python code, or using another ROS node. Starting with
Stage V3, integrated controllers can provide behavior without writing any code or using a ROS node. For
example:

• The ‘lasernoise’ controller: simulates noise generated in a robot's laser sensor

• The ‘pioneer_ flocking’ controller: enabling flocking behavior for a number of pioneer robots

4.1.4 Integration with Ground Control Stations

Stage is not designed for real-time simulation, which is an essential feature for Hardware In The Loop (HITL)
or Software In The Loop (SITL) scenarios, for this reason an integration with ground control stations is not
supported.

4.1.5 Other configuration parameters

Table 1 contains the argument, which can be passed to Stage to configure it.

Table 1 - Stage parameters

Parameter Description

q If set, Stage will run "headless", i.e. no Graphic User
Interface (GUI) will be displayed

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 14 of 49

4.2 Gazebo

Gazebo is one of the most used simulators based on the ROS architecture. It provides a 3D robotics
environment that takes into account features like gravity, friction, inertia or collision detection. It is open-
source14.

The ROS community has devoted much effort in developing specific packages for the integration of Gazebo
with ROS15, to the point of integrating the program within the distribution itself. Gazebo is integrated into
the ROS distribution since the Hydro version.

In addition to simulation, Gazebo also offers emulation of the sensors and actuators, which are totally
integrated within ROS. This integration is done through plugins that tie in ROS messages and services calls
for sensors outputs and motors inputs.

The main idea of these features is to respond like real robots without changes to the robot code. In this way
the developers can test algorithms, design robots or train AI systems in a simulation environment, in the
same way they would within real robots.

4.2.1 Control interface

Gazebo uses a distributed architecture with separate libraries for physics simulation, rendering, user interface,
communication, and sensor generation. Additionally, it provides two executable programs for running
simulations:

• A server gzserver for simulating the physics, rendering, and sensors.

• A client gzclient that provides a graphical interface to visualize and interact with the simulation.

Gazebo can also be launched form the command line by running

Gazebo.exe

in Windows, or

gazebo

in Linux and macOS. In this way the server and the client are launched simultaneously.

By modifying a set of variables, the user can add new models or worlds. These variables are listed in Table 2.

Table 2 - Gazebo environment variables

Variable Description

GAZEBO_MODEL_PATH Colon-separated set of directories where Gazebo will search for models

GAZEBO_RESOURCE_PATH Colon-separated set of directories where Gazebo will search for other
resources such as world and media files.

14 https://bitbucket.org/osrf/gazebo/.
15 http://wiki.ros.org/gazebo_ros_pkgs

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 15 of 49

GAZEBO_MASTER_URI Uniform Resource Identifier (URI) of the Gazebo master. This specifies
the IP and port where the server will be started and tells the clients
where to connect to.

GAZEBO_PLUGIN_PATH Colon-separated set of directories where Gazebo will search for the
plugin shared libraries at runtime.

GAZEBO_MODEL_DATABASE_URI URI of the online model database where Gazebo will download models
from.

Gazebo offers two kinds of API, one related to the source code of Gazebo and one related to Gazebo
Messages16. These APIs are designed for the development rather than for the interaction with Gazebo.

The interaction with Gazebo simulation happens through ROS messages. The most common way is use ROS
topics and services that the ‘gazebo control plugin’ offers. As already mentioned, the topics correspond to the
those of the real robot.

Gazebo can also be executed directly as a ROS node, by using the following command

roslaunch gazebo_ros my_world.launch

In this case, it needs a roscore node launched before. From the ROS side, Gazebo starts a node called
‘/gazebo’ which provides all the topics and services of the simulation.

4.2.2 Simulation settings

To set up the entire environment of the simulation, Gazebo uses an eXtensible Markup Language (XML) file
named world. This term is used to describe the collection of robots and objects (buildings, tables, lights, etc)
and global parameters like the sky, the ambient light and the physics properties.

There are two options to define a world:

1. From the Interface: The user can add some primitives like spheres or cubes to the world by clicking
icons (see Figure 4) and then setting their poses in the scenario (see Figure 5). Also, by selecting the
‘Insert’ tab in the upper left-hand corner, the user can access the model database of Gazebo where
there are more complex models.

16 http://gazebosim.org/api.html

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 16 of 49

Figure 4 –Icons in Gazebo interface

Figure 5 - Objects posed in Gazebo interface

2. From an XML file: The user can write a plain text XML file adding as a plain text the models and the
properties needed, using the Simulation Description Format (SDF) (see Section 6.1.3).

New 3D models can also be integrated into the world. They can be designed using the Model Editor of
Gazebo by combining primitives or imported from a STereo Lithography (STL) standard file17.

By default, Gazebo launches the ‘ODE’ physics engine18, but this can be changed in the world XML file to
other physics engine like ‘Bullet’19 , ‘Simbody’20 or ‘DART’21.

17 http://gazebosim.org/tutorials?tut=guided_b3

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 17 of 49

Once the world is ready, it can be saved by selecting ‘Save World As’ in the ‘File’ Menu. A saved world may be
loaded on the command line:

gazebo my_world.world

or setting the launch file as mentioned above.

The last point in configuring the simulation settings is to spawn the robots. There are two ways to do it:

1. ROS Service Call Spawn Method: The first method keeps the robot's ROS packages more portable
between computers and repository check outs. It allows you to keep the robot's location relative to a
ROS package path, but also requires making a ROS service call using a small (Python) script.

2. Model Database Method: The second method includes the robots within the world file, which seems
cleaner and more convenient but requires adding the robots to the Gazebo model database by
setting an environment variable.

4.2.3 Implementation of the CPS behavior

While using Gazebo, the CPS behavior will reside in C++ or Python code on the side of ROS, so the
implementation remains external to Gazebo.

4.2.4 Integration with Ground Control Stations

A typical Simulation Environment that integrates the Control Ground Station and Gazebo is shown in Figure
6. It uses PX422 in SITL mode. The components of the system connect to each other using User Datagram
Protocol (UDP), and may be located on the same machine or distributed.

PX4 listens on UDP port 14560. Gazebo connects itself to this port, then exchange information using the
Simulator Micro Air Vehicle Link (MAVLink)23 API, which defines a set of MAVLink messages that can be used
to supply sensor data received by the simulator environment and return motor and actuator values. Then,
PX4 uses the normal MAVLink module to communicate with the Ground Stations (which listen on port 14550)
and external developer APIs like ROS (which listen on port 14540).

This can also be done using the HITL approach. where the PX4 software is running on an actual device.

18 www.ode.org
19 https://pybullet.org/wordpress/
20 https://simtk.org/projects/simbody/
21 http://dartsim.github.io/
22 http://px4.io/
23 https://mavlink.io/en/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 18 of 49

Figure 6 - Configuration to use Ground Control Station with Gazebo

4.2.5 Other configurations

Table 3 lists the arguments that can be used to configure the Gazebo simulation when starting it from ROS
via the command line:

Table 3 - Gazebo parameters

Parameter Description

paused Starts Gazebo in paused state (default false)

use_sim_time Tells ROS nodes asking for the time to get the Gazebo-published simulation time,
published over the ROS topic/clock (default true).

gui Launches the user interface window of Gazebo (default true).

recording Enables Gazebo state log recording

debug Starts gzserver in debug mode using gdb (default false)

For example, to launch the simulator with all the parameters:

roslaunch gazebo_ros my_world.launch paused:=true use_sim_time:=false gui:=true throt
tled:=false recording:=false debug:=true

Also, these parameters can be defined in a launch XML file, as shown in Figure 7.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 19 of 49

Figure 7 - Gazebo launch file

4.3 V-REP

The Virtual Robot Experimentation Platform (V-REP) is a 3D robot simulator. It also provides a development
environment, which can be used to configure and simulate any robot.

Its functionalities can be integrated and combined smoothly, leveraging the API and script functionality
provided. V-REP supports two physics engines: Bullet24 and Open Dynamic Engine (ODE)25, handling
advanced features, like camera sensor simulation, graphing, etc.

4.3.1 Control interface

V-REP can be run from the command line using

vep.exe

on Windows, or

/vrep.app/Contents/MacOS/vrep’

on macOS or

./vrep.sh

on Linux.

V-REP provides an API framework, which may be used to control a simulator instance in several ways, as
shown in Figure 8. The regular API is used to control the framework from V-REP internal components. While
different APIs may be used, from external entities. The two most interesting are:

• The remote API (based on socket), which can be used to control the simulator from applications
written in several languages (Java, Python and C++, among others).

• The ROS interfaces, which can be used to control the simulator using ROS.

The remote APIs are subdivided in two parts: the client side and the server side. The client side is composed
of software libraries, written in several languages, which can be integrated into the application to control the

24 http://bulletphysics.org/wordpress/
25 http://www.ode.org/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 20 of 49

simulator remotely; the server side instead is a plugin that can be automatically loaded into the simulator to
enable the API.

V-REP also provides ROS interfaces, which duplicate the Remote API with a good fidelity, enabling V-REP to
be used as a ROS node, which can communicate with other nodes via ROS services, ROS publishers and ROS
subscribers. This feature is enabled in V-REP using a specific plugin, which can be loaded automatically when
V-REP is launched, but that requires roscore running concurrently.

Figure 8 - V-REP framework

4.3.2 Simulation settings

The simulation settings are handled using scenes and models files, where a scene can contain one or more
models. The scenes files are saved as ttt files, while the models files are saved as tttm files. Both scenes and
models can contain several elements, such as:

• Objects: main elements used to compose a simulation scene, such as types: shapes, cameras, lights
and so on.

• Child scripts: a set of routines written in Lua26, which handle a specific function in a simulation. Every
child script can be attached or associated with a scene object. Every child script can have a list of
simulation parameters attached to them, which can be used to adjust values of a specific simulation
model (like maximum velocity of a robot or resolution of a sensor).

Furthermore, only the scenes can contain:

• The environment that defines properties and parameters like background colors, ambient light and
additional settings.

26 https://www.lua.org/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 21 of 49

• The main script, which Is the basic code that allows a simulation to run. It contains all the functions,
which are called by the system to run the simulation. Default main scripts are provided by V-REP, it is
better to avoid modifying them, because it is a risky operation that can break the entire simulation
and because if not modified the main scripts are updated automatically when new functionality is
introduced.

Unfortunately, currently the files are saved in binary format and can only be modified using V-REP. The V-REP
developers27 currently suggest using a workaround that involves creating a script, using the V-REP API to
modify an existing scene. The development of a text-based file format has been declared in the same
discussion as ongoing, but seems to have been postponed.

4.3.3 Implementation of the CPS behavior

The behavior of the objects is handled through embedded scripts, written using the Lua language attached
to the objects of the scene. More dynamic behaviors of the CPSs, can exploit the plugins mechanism. These
plugins can be written in any language that can generate a shared library and is able to call exported C
functions. They are automatically loaded by the application at startup (if contained in a specific folder), or
they can be loaded/unloaded dynamically at run-time calling two specific APIs. The plugins are usually used
in combination with scripts, in order to make them more dynamic. Instead of embedding the behavior in the
script, it contains only the calls to the plugin, which contains the actual implementation of the functions.

4.3.4 Integration with Ground Control Stations

Currently, V-REP doesn’t support a MAVLink plugin. For this reason, the simulator is not compatible with the
more commonly used ground control stations. Anyway, a ground control station can be interfaced using the
ROS interface provided by V-REP.

4.3.5 Other configuration parameters

Table 4 shows some of the parameters that can be specified while launching the V-REP instance.

Table 4 - V-REP parameters

Parameter Description

h Runs V-REP in headless mode (i.e. without any GUI).

sXXX Automatically starts the simulation. XXX represents an optional simulation time in
milliseconds after which simulation should stop again.

q Automatically quits V-REP after the first simulation run has ended.

DEBUG Enables or disables the debug mode (set to TRUE or FALSE).

4.4 ARGoS

Autonomous Robots GO Swarming (ARGoS) is a multi-physics robot simulator designed to efficiently
simulate complex experiments involving large swarms of heterogeneous robots. Plugins can be added to

27 http://www.forum.coppeliarobotics.com/viewtopic.php?t=2319

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 22 of 49

customize ARGoS. For example, multiple physics engines may be used concurrently and assigned to different
regions of the physical space. As robots navigate the environment, they are automatically transferred from
engine to engine.

ARGoS can be installed on Linux using binary packages. For macOS, it can be done via the command line
using a third-party package manager. It may work on Windows 10 using the Linux sub-system, however this
has not been confirmed. Further documentation about installing ARGoS is provided on the ARGoS webpage
and Github.

4.4.1 Control interface

A simulation, such as the diffusion 1 simulation, can be launched by entering the command:

launch argos3 -c xml/diffusion 1.xml

4.4.2 Simulation settings

The settings for an experiment in ARGoS are described in an XML configuration file. As illustrated in Figure 9,
it includes the information about:

a. Framework: ARGoS parameters like the number of threads and the base random seed.

b. Controllers: configuration of user-defined controllers.

c. Arena: how objects are distributed in the simulated environment.

d. Physical_engines: the configuration of how the engines are connected to each other.

e. Media: configures the communication media to be used.

f. Visualization: an optional feature to add visualization.

g. Loop_function: an optional feature with user-defined conditions.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 23 of 49

Figure 9 - A general configuration file in ARGoS

4.4.3 Implementation of the CPS behavior

As described in Figure 10, ARGoS requires two kinds of input28:

1- The XML configuration argos file, introduced in Section 4.4.2.

2. Robot controllers and loop functions files, which are basically user code compiled into one or more
libraries. Both files are C++ implementations of robot swarm behavior.

Figure 10 - Input files for ARGoS

4.4.4 Integration with Ground Control Stations

Since simulations with ARGoS are not specialized for real-time simulation, which is an essential feature for
hardware-in-the-loop scenarios (Lächele, 2013), an integration with ground control stations is not supported.

28 http://www.argos-sim.info/user_manual.php

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 24 of 49

4.4.5 Other configuration parameters

• Optionally, the POV-Ray package can be installed on Ubuntu and KUbuntu to provide high-quality
visualizations.

• In the XML file, Framework section, there are two attributes, both optional, shown in Table 5.

Table 5 - ARGoS parameters

Parameter Description

threads Number of threads to execute each simulation step in parallel.

method Indicate task assignment method for threads.

4.5 jMAVSim

jMAVSim is a simple drone simulator, which allows vehicles running PX4 autopilot to be simulated within a
simulated space. It is easy to set up and can be used to test both the drone’s features and its capability to
react to failures. It can work both in SITL and HITL mode. In the first case the PX4 code is installed and run
locally on the simulating machine, while in the latter case, the code runs on the drone.

4.5.1 Control interface

jMAVSim is a Java application that can be executed as a standard Java application via the command line or
launched by compiling a SITL instance of PX4. jMAVSim doesn’t provide an API but, can be controlled via the
command line also during the simulation.

4.5.2 Simulation settings

The environment is statically modelled using an image file.

The CPSs are modeled using a the WaveFront OBJ file format29, which contains the list of polygons to be
shown, described listing their points and their faces. There is no description of the colors of the faces, but the
OBJ files can contain a link to material files (mtl) that contain the definitions for the RGB values for the
material's diffuse, ambient, and specular colors, along with other characteristics such as specularity,
refraction, transparency, etc.

4.5.3 Implementation of the CPS behavior

jMAVSim can integrate the CPS behavior into a ROS node, which communicates with the jMAVSim instance.

4.5.4 Integration with Ground Control Stations

The integration with ground control stations is done in the same way described in Section 4.2.4 for the
Gazebo simulator and also in this case, it works with both SITL and HITL approaches.

4.5.5 Other configuration parameters

Table 6 shows some parameters, which can be indicated launching the jMAVsim instance.

29 http://www.fileformat.info/format/wavefrontobj/egff.htm

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 25 of 49

Table 6 - jMAVSim parameters

Parameter Description

udp - <mav ip>:<mav port> Opens a TCP/IP UDP connection to the MAV (default: 127.0.0.1:14560).

serial [<path> <baudRate>] Opens a serial connection to the MAV instead of UDP.

r <Hz> Refreshes rate at which jMAVSim runs. This dictates the frequency of the
HIL_SENSOR messages. Default is 500 Hz.

ap <autopilot_type> Specifies the MAV type. E.g. 'px4' or 'aq'. Default is: generic

qgc <qgc ip address>:<qgc
peer port>

Forwards message packets to QGC via UDP at 127.0.0.1:14550

Rep Starts with data report visible.

4.6 STDR

Simple Two Dimensional Robot Simulator (STDR) implements a distributed, client-server architecture, where
the nodes can run in a different machines and communicate using ROS interfaces. STDR Simulator, also
provides a GUI developed in QT, for visualization purposes and more. Furthermore, STDR provides also a GUI,
which can be optionally used.

The STDR simulator is composed by a set of ros packages. The main ones are: stdr_server that implements
synchronization and coordination functionalities of STDR Simulator. stdr_gui, which is a GUI for visualization
purposes in STDR Simulator. stdr_msgs that provides messages, services and actions for STDR Simulator.
stdr_launchers, which launches files, to easily bring up server, robots and the GUI. stdr_resources that provides
robot and sensor description files for STDR Simulator.

4.6.1 Control interface

STDR can be controlled through command line commands. The package stdr_launchers provides several
default ways to launch a server. The basic way to launch the server is:

roslaunch stdr_launchers server_no_map.launch

which launches the STDR simulator without map and robots preloaded. Furthermore, there are other
launchers that add default features to STDR: a random map (server_with_map), the random map and the GUI
(server_with_map_and_gui) and with map, gui and a robot (server_with_map_gui

STDR provides also several other commands that can be used to execute several actions:

• To load a map stored in a yaml file, the command is

rosrun stdr_server load_map maps/sparse_obstacles.yaml

• To add a robot (described by a yaml file) in a precise position the command is

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 26 of 49

rosrun stdr_robot robot_handler add resources/robots/pandora_robot.yaml 9 7

• To launch the GUI, the command is

roslaunch stdr_gui stdr_gui.launch

4.6.2 Simulation settings

The models to be used for STDR Simulator are contained in the stdr_resources package. Specifically, this is
subdivided into two main types:

• Maps: every map consists of a couple of files: a static png and a yaml file with the properties of the
map (source, location of obstacles, etc.).

• YAML/SDF files: descriptions of robots, laser sensors, range sensors and footprints.

Both the maps and the models of the robots can be customized by hand, writing the yaml file, following the
examples available online, or using a software: the maps can be created using gmapping30 and the robots
can be created using directly the STDR GUI31.

4.6.3 Implementation of the CPS behavior

STDR Simulator is designed to be completely ROS compliant. Indeed, robots and sensors sends all the
measurements on ROS topics. In that way, STDR uses all ROS advantage provided by the robotic framework.

4.6.4 Integration with Ground Control Stations

STDR is a simple simulator, which is not designed to support advanced features like real-time simulation with
HITL or SITL, for this reason an integration with ground control stations is not supported.

4.6.5 Other configuration parameters

STDR doesn’t provide the possibility to specify additional arguments to configurate the simulation.

30 http://wiki.ros.org/gmapping
31 http://wiki.ros.org/stdr_simulator/Tutorials/Robot%20creator

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 27 of 49

5 Simulation Virtual Machine

After the analysis of ROS based simulator, the partners have decided to start the integration of external
simulators, by integrating Gazebo. This simulator has been chosen because it provides all the features
needed, allows the models of the environment and of the CPS to be described using an XML-like format, and
to control the simulation via the command line. Furthermore, it also provides a GUI, which can be used for
visualization of the simulation.

For this reason, a virtual machine has been built to provide a complete environment available to test the
Gazebo integration. Since Gazebo is natively a Linux application, the virtual machine has been based on
Ubuntu 16.04 LTS. The following packages have been installed to build a complete simulation environment:

• PX4 flight control stack version 1.8, consisting of two main layers: the flight stack that is an
estimation and flight control system, and the middleware that consists primarily of device drivers for
embedded sensors, communication with the external world (companion computer, Ground Control
Station, etc.) and the uORB32 publish-subscribe message bus. In addition, the middleware includes a
simulation layer that allows PX4 flight code to run on a desktop operating system and control a
computer modeled vehicle in a simulated "world".

• ROS Kinetic33: Kinetic Kame is the 10th official ROS release. It is supported on Ubuntu Wily and
Xenial.

• MAVROS34: this package enables MAVLink extendable communication between computers running
ROS and MAVLink enabled autopilots like PX4. Additional it provides UDP MAVLink bridge for
ground control stations (e.g. QGroundControl)

• Gazebo 7.0: the simulator as presented in Section 4.2.

• jMAVSim: the simulator described in Section 4.5.

• OpenCV35: Open Source Computer Vision Library is an open source library that provides more than
2500 optimized algorithms, spawning from a set of both classic and state-of-the-art computer vision
and machine learning algorithms.

• QGroundControl36: open-source software that provides full flight control and mission planning for
any MAVLink-enabled drone.

Whit this software, the Virtual Machine can be used to create an environment similar to the one showed in
Figure 6, which allows simulation with SITL or HITL, both with Gazebo or jMAVSim.

32 https://dev.px4.io/en/middleware/uorb.html
33 http://wiki.ros.org/kinetic
34 http://wiki.ros.org/mavros#mavros.2BAC8-Plugins.sys_status
35 https://opencv.org/
36 http://qgroundcontrol.com/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 28 of 49

6 Implementation and Integration

This section describes the integration of the initial simulation environments into the CPSwarm Workbench,
firstly describing the custom and standard data formats chosen and then describing the implementations
themselves. The latter has been subdivided in two parts: the first describes the implementation of the API
linking the Optimization Tool, SOO and Simulation Managers; the second describes the Simulation Manager
code shared among all the Simulation Managers, and the implementation of the Gazebo Simulation
Manager.

Please note that, as indicated in Section 2.1 the description of the whole Simulation and Optimization
Environment architecture and API is material of the deliverable D6.2 – Final Simulation Environment (due at
month 28); for this reason, this section describes only the implementation of the parts relative to the
simulator integration and not the interaction of the components with the rest of the CPSwarm Workbench.

6.1 Data formats of the simulation interfaces in the CPSwarm Workbench

Studying the data formats collected in the state-of-the-art described in the deliverable D6.1 and the formats
used by the simulation engines described in Section 3, the authors have decided to adopt mainly two
solutions: the SDF standard37, where it is suitable, specifically for the description of the CPS and
environmental model; and XML and JavaScript Object Notation (JSON) documents in the other cases. Where it
is not possible to use plain text communication, the components exchange files. For example, the CPS
behavior is described using a candidate (C code, generated by the Optimization Tool, which describes the
actual CPS behavior, returning the outputs from the inputs received) and a wrapper (Java code, which is used
to collect the inputs from the sensors, using ROS).

6.1.1 JSON

Several custom JSON formats have been defined for the messages exchanged among the different
components. These formats are described in the following subsections.

6.1.1.1 StartOptimization

This message is sent from the SOO to the Optimization Tool to start an optimization process. ANNEX F
contains the schema of the StartOptimization message. This message basically instructs the Optimization
Tool about how to start the optimization. It indicates the number of threads to be used, the parameters to be
used for the simulations and finally the list of the accounts of the Simulation Managers to be used by the
Optimization Tool.

6.1.1.2 GetProgress and CancelOptimization

These two messages sent from the SOO to the Optimization Tool have a common format (ANNEX G), which
contains a title (GetProgress or CancelOptimization) and the ID of the optimization to query.

6.1.1.3 OptimizationResult

This message is used by the Simulation Managers to return the simulation results to the Optimization Tool,
using the format shown in ANNEX H that contains the ID of the simulation and the fitness value calculated
using the fitness function.

37 http://sdformat.org/

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 29 of 49

6.1.1.4 OptimizationStarted, OptimizationCancelled and OptimizationProgress

These three messages are sent by the Optimization Tool to the SOO as a reply to StartOptimization,
CancelOptmization and GetProgress. They share the same schema (shown in ANNEX I) with the ID of the
optimization and a message, which can be:

• “OK”: if everything has gone well, as answer of StartOptimization and CancelOptmization messages.

• A percentage: as positive answer to a GetProgress message.

• or an error message if something has gone wrong for all the messages.

6.1.1.5 RunSimulation

This message is sent by the Optimization Tool to the Simulation Manager to run a simulation and consists of
an ID and the parameters to be used for the simulation (such a flag indicating if the GUI should be displayed
or not), The format of the message is given in ANNEX J.

6.1.2 XML

For the configuration of the Optimization Tool, a custom XML format has been used. It is described in the
following subsection.

6.1.2.1 Optimization Tool configuration

The Optimization tool is configured using an XML format (see the dtd in ANNEX A). This formalism contains
the following tags:

• SessionConfig: it contains all the generic parameters used to configure the Optimization Tool, each
one is described by a <configurationEntry>, which contains key, type and value.

• Problem: it contains the parameters for the definition of the problem to be optimized by the
Optimization Tool, each one is described by a <problemEntry>, which contains key, type and value.

• Method: it contains the parameters for the definition of the method to be used to evolve the
algorithm in the Optimization Tool, each one is described by a <methodEntry>, which contains key,
type and value.

• Representation: it contains the parameters for the creation of the candidates to be evaluated by the
Optimization Tool, each one is described by a <representationEntry>, which contains key, type and
value.

• Ranking: it contains the parameters for the definition of the ranking to be used by the Optimization
Tool to evaluate the results of the simulation, each one is described by a <rankingEntry>, which
contains key, type and value.

6.1.2.2 Optimization Tool result

The result of one optimization process uses an XML format like the one used for its configuration ((see the
dtd in ANNEX B). Indeed, many fields are identical to those described in Section 6.1.2.1; the only difference is
the populations tag, which describes the populations created, each one described with three parameters:
count, generation and randomseed.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 30 of 49

6.1.3 SDF

SDF is an XML format for describing CPSs and environments for robot simulators. This format was designed
as part of Gazebo, with scientific robot applications in mind and due to its flexibility has become a de-facto
standard, for describing all aspects of a simulation, like robots, static and dynamic objects, lighting, terrain,
and even physics.

SDF may be used to describe all aspects of a robot, including complex ones, like a humanoid. Many
properties can be defined, such as kinematic and dynamic attributes, sensors and textures among others. For
this reason, SDF can be used for both simulation, visualization, motion planning, and robot control.

In addition, SDF provides a format to define environments, which can include multiple lights, terrain, streets
from OpenStreetMaps38, and any model provided from an online repository of 3D models39.

Among others, SDF is composed of the following modules:

• World: a container for all the other modules.

• Scene: generic features of the world, like ambient light or color of the background.

• State: a description of the current state of the simulation.

• Light: a description of a light source.

• Model: a description of a complete CPS or any physical object.

In addition to the XML format, the SDF website provides also a C++ library that can be used to parse SDF
documents.

In CPSwarm this format is used to pass the environment and CPS models from the Modelling Tool to the
SOO and to the Simulation Managers. This document provides some examples of SDF files:

• ANNEX C contains an example of a world file, where the main tags are: <include>, which are the
environment models included in this world; and <model>, which contains the CPS to be integrated
in the world, eventually with the associated plugins.

• ANNEX D contains an example of an environment model, where the main tags are <link>, which
describes a physical link with the inertia, collision and visual properties; <visual>, which specifies the
shapes of the environment for visualization properties; and <collision>, which contains the physical
properties of the environment and its position.

• ANNEX E contains an example of an object model, in this case a model of Velodyne LIDAR HDL-
32E40. The model is composed by the following components:

o Two <link> tags, which describe the base part and the top part of the sensor and its physical
and visualization properties.

38 https://www.openstreetmap.org/
39 http://thepropshop.org/
40 http://velodynelidar.com/hdl-32e.html

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 31 of 49

o A <sensor> tag, which describes the laser sensor properties (including a model of the noise
that influence the sensor, contained in the <noise> tag).

o A <joint> tag, which describes the joint between the two links, in this case the joint that
allows the top part of the model to rotate around the base part.

6.1.4 Wrapper

The wrapper contains methods useful for coordinating the swarms behavior, such as synching several agents,
through ROS messages. The main methods are described in the following subsections.

6.1.4.1 Main()

Main subscribes the agent to the ROS topics needed to receive messages (for example to information about
the map used). Then the method calls the sync method to wait that all the agents in the swarm are able to
start the simulation. Then the method starts the main loop, which iterates until the agent reaches the exit or
the maximum number of allowed simulation steps is reached.

6.1.4.2 Sync()

Publishes a sync message, advising the other agents that this one is ready to move.

6.1.4.3 SyncUpdate()

This callback is used to receive the sync messages from the other agents. It collects the messages and keeps
count of ready agents. When all other agents are ready, it calls simStep method.

6.1.4.4 simStep()

Firstly, it resets the number of ready agents, then it collects the input to be passed to the candidate, using a
combination of the info already available and info obtained from the sensors, through ROS messages. For
example, in the emergency exit algorithm, it uses the positions of the exits to calculate the closest exit, to the
CPS position and uses the laser sensors to detect if there is another CPS in the cells nearby. These inputs are
passed to the candidate that returns the outputs, which are used to call the appropriate ROS actions, and
provide the actuations needed on the simulated CPSs. Finally, it publishes again a sync message, to advertise
the other agents that it is ready for another step, and then it waits again until all other agents are ready.

6.1.5 Candidate

The Candidate is the actual code that controls the CPS behavior. It is generated by the Optimization Tool,
based on the underlying representation being optimized, such as an Artificial Neural Network (ANN). The
main member of one candidate is the one described in the following subsection.

6.1.5.1 getOutput(float netInput[],long inputsize)

The getOutput method is called by the wrapper to get the output of the representation from the given inputs.
The parameters of the method are newInput that contains the vector of the inputs and inputSize that contains
the number of inputs passed. For the emergency exit example, the candidate receives the following inputs: x
and y distance from the closest exit and, an indication of the state of the four neighboring cells (with 0/1
values). The candidate passes the result back to wrapper. In the proposed example, the result is the direction
in which to move, to reach the closest exit avoiding the other CPSs of the swarm.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 32 of 49

6.2 Integration of FREVO as an Optimization Tool

FREVO is utilized as an example Optimization Tool within the CPSwarm project, providing evolutionary
optimization as outlined in D6.3 - Initial CPS System design optimization and fitness function design guidelines.
Rather than offering its usual user interface, FREVO runs headless and handles requests for optimization via
XMPP, exchanging data as described in Section 6.1.

While in this mode, FREVO is capable of executing any optimization process that it would normally be able to
carry out with the restriction that the Problem tag must be set to XmppProblem. This generic XMPP problem
specification allows FREVO to forward candidate controllers to the various Simulation Manager instances to
be embedded directly in the simulators. The Method, Representation and Ranking may be freely specified
and, due to FREVO’s unique plugin architecture, may be extended with custom components, e.g. additional
representations.

6.3 SOO

As indicated before, this section doesn’t contain the complete description of the SOO, which will be fully
detailed in D6.2, but only the description of the implementation of the interfaces with the Optimization Tool
and the Simulation Managers.

The SOO contains the main class SimulationOrchestrator, which has the following parameters.

• serverIP: IP of the XMPP server to be used.

• serverName: name of the XMPP server to be used.

• serverPassword: password to be used to connect to the server.

• dataFolder: folder to be used to store the data.

• optimizationUser: XMPP username of the Optimization Tool.

Firstly, the SimulationOrchestrator starts an XMPP client, attaching to the connection all the useful listeners
(described in the next section). Then, it adds to its roster Optimization Tool, which JID is known thanks to the
data passed as parameters. Finally, it waits to receive the request to start a simulation / optimization and the
availability from the Simulation Managers.

6.3.1 Listeners

6.3.1.1 ConnectionListenerImpl

This listener is used to receive the notifications of the status of the connection, in order to be able eventually
to react when the connection goes down (or, at least, to notify the user).

6.3.1.2 MessageEventCoordinatorImpl

This listener is used to receive the chat messages sent by the Optimization Tool (described in Section 3.1.1). It
handles the messages, taking the decisions based on this. If it is a positive OptimizaitonStarted message, it
sends the configuration file to the Optimization Tool; if it is a positive OptimizationCanelled, it reset the
status of the current optimization; if it is positive optimizationProgress, it forwards the message to who is
required it. Finally, in case of errors, they are logged and handled accordingly.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 33 of 49

6.3.1.3 PacketListenerImpl

This listener is used to receive the presences from the Optimization Tool and the Simulation Managers, to
accept their requests of subscription of the presences and to collect the info of the Simulation Managers
when they are received as status of the presence.

6.4 Simulation Manager

The Simulation Manager is the module, which contains all the parts the code, common to all the managers.
The main class of the Simulation Manager is SimulationManager. This is an abstract class implemented by all
the managers. It has the following parameters:

• serverIP: IP of the XMPP server to be used.

• serverName: name of the XMPP server to be used.

• serverPassword: password to be used to connect to the server.

• dataFolder: folder to be used to store the data.

• serverInfo: info of the simulator wrapped by this manager.

• optimizationUser: XMPP username of the Optimization Tool.

• orchestratorUser: XMPP username of the SOO.

The SimulationManager encapsulates an XMPP client (based on the open-source XMPP library smack41);
firstly, it connects itself to the XMPP server and it creates the account with the ID of the manager that is
constituted by the term “manager_” followed by a random UUID. It adds to the connection a set of listeners
(detailed in the following subsection) and then, it publishes a presence, which contains in the status the info
of the simulator, wrapped by this manager (i.e. dimensions supported, maximum number of agents, etc.).
Finally, the manager adds to its roster42 the Optimization Tool and the SOO. In this way, the manager
subscribes itself to the presences of Optimization Tool and SOO and vice versa.

The following subsection details the listener classes used by the SimulationManager to receive the messages
and presences from the other component.

6.4.1 Listeners

6.4.1.1 ConnectionListenerImpl

The same listener described in Section 6.3.1.1.

6.4.1.2 AbstractFileTransferListener

This listener is fired when a request to transfer files is received. The manager checks who is the sender: if it is
the SOO, the files to be received are the ones to be used to setup the simulation; else, if it is the Optimization
Tool, the file received it is the candidate which has to be evaluated. The class is abstract because the
implementation of the methods used to handle the configuration files and the candidate is delegated to the

41 https://www.igniterealtime.org/projects/smack/
42 https://xmpp.org/rfcs/rfc6121.html#roster

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 34 of 49

specific Simulation Managers, since every Simulation Manager will need to do different operations or
conversions.

6.4.1.3 PresencePacketListener

This listener is used to receive the subscription requests from Optimization Tool and SOO. It accepts the
request, authorizing the exchange of the presences with the other components.

After the description of the parts common to all the Simulation Managers, the next section will introduce the
first implementation of the one used to integrate the Gazebo simulator.

6.5 Gazebo Simulation Manager

The main class of this Simulation Manager is GazeboSimulationManager that instantiates its superclass
indicating the AbstractFileTransferListener implementation to use.

6.5.1.1 FileTransferListenerImpl

It is the implementation of AbstractFileTransferListener for the Gazebo Simulation Manager. Since Gazebo
uses natively SDF files both for the environment and CPS description and this eases a lot the integration of
the simulator with the proposed solution, since this format is the same chosen to exchange the models as
described in section 6.1.3. When the configuration files are received, for each SDF model file, the Simulation
Manager creates a directory named as the name of the file and stores in the model file and the
corresponding configuration file (which is an XML file with some metadata to associate to the model, like the
name of the model and the SDF version used to describe it). Instead, the wrapper to be used to wrap the
candidate and the world file that describes the simulation are stored in a local folder, named with the ID of
the optimization process. Then, every time the Simulation Manager receives a new candidate, it uses the
wrapper to compile the new plugin (using the command available to compile ROS packages43) and then it
starts the simulation in Gazebo using the parameters indicated by the user, using a launch file, which allows
to start all the nodes needed for the simulation.

43 http://catkin-tools.readthedocs.io/en/latest/index.html

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 35 of 49

7 Conclusions

This deliverable has presented the work done in Task 6.4 for the integration of the external simulators in the
CPSwarm Workbench. The deliverable firstly has briefly introduced the Simulation and Optimization
Environment designed in CPSwarm. Then, it has described the analysis done on the more interesting
simulation engines, among the ones collected as state-of-the-art in D6.1. Finally, the deliverable has
presented the implementations done, based on the result of this analysis: firstly, the Virtual Machine built
with all the software needed to test the Simulation Environment; then the data formats used to integrate the
simulators and the software developed for the integration of the first simulation engine (Gazebo).

The deliverable will have two other iterations: deliverable D6.6 - Updated Integration of external simulators
due at month 28 and D6.7 - Final Integration of external simulators due at month 36. These deliverables will
contain the further developments that will be done in the next months in the Task 6.4. Specifically:

• Integration of other simulation engines, beside Gazebo (i.e. the other simulator analyzed in this
deliverable).

• Continue refactoring of the implementations and the data formats to make it compatible with a large
set of simulation engines.

• Integration of the work done in the Task 6.4, with the outcomes of the other tasks of WP6, related to
the architecture of the Simulation and Optimization Environment and to the fitness function design.

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 36 of 49

Acronyms

Acronym Explanation

API Application Programming Interface
CPS Cyber Physical System
ROS Robot Operating System
CPU Central Processing Unit
JSON JavaScript Object Notation
ANN Artificial Neural Network
SOO Simulation and Optimization Orchestrator
UUID Univers Unique IDentifier
ROS Robot Operating System
SITL Software In The Loop
HITL Hardware In The Loop

MAVLink Micro Air Vehicle Link
V-REP Virtual Robot Experimentation Platform
ODE Open Dynamic Engine

ARGoS Autonomous Robots GO Swarming
STDR Simple Two Dimensional Robot Simulator
XMPP eXstensible Messaging and Presence Protocol
XML eXtensible Markup Language
SDF Simulation Description Format
STL STereo Lithography
UDP User Datagram Protocol
JSON JavaScript Object Notation
URI Uniform Resource Identifier

MQTT Message Queue Telemetry Transport
SUMO Simulation of Urban MObility
FREVO FRamework for Evolutionary Design

GUI Graphic User Interface
openCV Open Source Computer Vision Library

List of figures
Figure 1 – The broker-based approach of the CPSwarm Worbench ... 7
Figure 2 - CPSwarm concept ... 9
Figure 3 - CPSwarm reference architecture .. 10
Figure 4 –Icons in Gazebo interface ... 16
Figure 5 - Objects posed in Gazebo interface ... 16
Figure 6 - Configuration to use Ground Control Station with Gazebo ... 18
Figure 7 - Gazebo launch file .. 19
Figure 8 - V-REP framework .. 20
Figure 9 - A general configuration file in ARGoS ... 23
Figure 10 - Input files for ARGoS .. 23

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 37 of 49

List of tables
Table 1 - Stage parameters ... 13
Table 2 - Gazebo environment variables ... 14
Table 3 - Gazebo parameters ... 18
Table 4 - V-REP parameters .. 21
Table 5 - ARGoS parameters ... 24
Table 6 - jMAVSim parameters .. 25

References
Conzon, D. T. (2012). The VIRTUS Middleware: An XMPP Based Architecture for Secure IoT

Communications. 21st International Conference on Computer Communications and
Networks (ICCCN), (pp. 1-6).

Lächele, J. M. (2013). "Swarm-simx and telekyb: Two ros-integrated software frameworks for
single-and multi-robot applications.". Int. Work. on Towards Fully Decentralized Multi-Robot
Systems: Hardware, Software and Integration at 2013 IEEEInt. Conf on Robotics and
Automation.

Micha Rappaport, D. C. (2018). Distributed Simulation for Evolutionary Design of Swarms of
Cyber-Physical Systems. ADAPTIVE 2018, (p. 6).

Staranowicz, A. a. (2011). "A survey and comparison of commercial and open-source robotic
simulator software.". Proceedings of the 4th International Conference on PErvasive
Technologies Related to Assistive Environments,, (p. p. 56).

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 38 of 49

ANNEX A – Optimization Tool Configuration

<!ELEMENT frevo (sessionconfig, problem, method, representation, ranking) >

<!ELEMENT sessionconfig (configentry)+ >

<!ELEMENT configentry EMPTY >

<!ATTLIST configentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT problem (problementry)+ >

<!ATTLIST problem
 class CDATA #REQUIRED >

<!ELEMENT problementry EMPTY >

<!ATTLIST problementry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT method (methodentry)+ >

<!ATTLIST method
 class CDATA #REQUIRED >

<!ELEMENT methodentry EMPTY >

<!ATTLIST methodentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT representation (representationentry)+ >

<!ATTLIST representation
 class CDATA #REQUIRED >

<!ELEMENT representationentry EMPTY >

<!ATTLIST representationentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT ranking (rankingentry)+ >

<!ATTLIST ranking
 class CDATA #REQUIRED >

<!ELEMENT rankingentry EMPTY >

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 39 of 49

<!ATTLIST rankingentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

ANNEX B – Optimization Tool Result
<!ELEMENT frevo (problem, method, representation, ranking, populations) >

<!ELEMENT problem (problementry)+ >

<!ATTLIST problem
 class CDATA #REQUIRED >

<!ELEMENT problementry EMPTY >

<!ATTLIST problementry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT method (methodentry)+ >

<!ATTLIST method
 class CDATA #REQUIRED >

<!ELEMENT methodentry EMPTY >

<!ATTLIST methodentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT representation (representationentry)+ >

<!ATTLIST representation
 class CDATA #REQUIRED >

<!ELEMENT representationentry EMPTY >

<!ATTLIST representationentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT ranking (rankingentry)+ >

<!ATTLIST ranking
 class CDATA #REQUIRED >

<!ELEMENT rankingentry EMPTY >

<!ATTLIST rankingentry
 key CDATA #REQUIRED
 type CDATA #REQUIRED
 value CDATA #REQUIRED >

<!ELEMENT populations (population)+ >

<!ATTLIST populations
 count CDATA #REQUIRED

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 40 of 49

 generation CDATA #REQUIRED
 randomseed CDATA #REQUIRED >

<!ELEMENT population ANY >

ANNEX C – SDF world example
<?xml version="1.0" ?>
<sdf version="1.5">
 <world name="default">
 <!-- A global light source -->
 <include>
 <uri>model://sun</uri>
 </include>
 <!-- A ground plane -->
 <include>
 <uri>model://ground_plane</uri>
 </include>

 <!-- A testing model that includes the Velodyne sensor model -->
 <model name="my_velodyne">
 <include>
 <uri>model://velodyne_hdl32</uri>
 </include>

 <!-- Attach the plugin to this model -->
 <plugin name="velodyne_control" filename="../libvelodyne_plugin_ros.so">
 <velocity>2000</velocity>
 </plugin>
 </model>

 </world>
</sdf>

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 41 of 49

ANNEX D – SDF environment model example
<?xml version="1.0" ?>
<sdf version="1.5">
 <model name="ground_plane">
 <static>true</static>
 <link name="link">
 <collision name="collision">
 <geometry>
 <plane>
 <normal>0 0 1</normal>
 <size>100 100</size>
 </plane>
 </geometry>
 <surface>
 <friction>
 <ode>
 <mu>100</mu>
 <mu2>50</mu2>
 </ode>
 </friction>
 </surface>
 </collision>
 <visual name="visual">
 <cast_shadows>false</cast_shadows>
 <geometry>
 <plane>
 <normal>0 0 1</normal>
 <size>100 100</size>
 </plane>
 </geometry>
 <material>
 <script>
 <uri>file://media/materials/scripts/gazebo.material</uri>
 <name>Gazebo/Grey</name>
 </script>
 </material>
 </visual>
 </link>
 </model>
</sdf>

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 42 of 49

ANNEX E – SDF Object model example
<?xml version="1.0" ?>
<sdf version="1.5">

 <model name="velodyne_hdl-32">
 <!-- Give the base link a unique name -->
 <link name="base">

 <!-- Offset the base by half the lenght of the cylinder -->
 <pose>0 0 0.029335 0 0 0</pose>
 <inertial>
 <mass>1.2</mass>
 <inertia>
 <ixx>0.001087473</ixx>
 <iyy>0.001087473</iyy>
 <izz>0.001092437</izz>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyz>0</iyz>
 </inertia>
 </inertial>

 <collision name="base_collision">
 <geometry>
 <cylinder>
 <!-- Radius and length provided by Velodyne -->
 <radius>.04267</radius>
 <length>.05867</length>
 </cylinder>
 </geometry>
 </collision>

<visual name="base_visual">
 <!-- Offset the visual by have the base's height. We are not rotating
 mesh since symmetrical -->
 <pose>0 0 -0.029335 0 0 0</pose>
 <geometry>
 <mesh>
 <uri>model://velodyne_hdl32/meshes/velodyne_base.dae</uri>
 </mesh>
 </geometry>
</visual>
</link>

 <!-- Give the base link a unique name -->
 <link name="top">

 <!-- Vertically offset the top cylinder by the length of the bottom
 cylinder and half the length of this cylinder. -->
 <pose>0 0 0.095455 0 0 0</pose>
 <inertial>
 <mass>0.1</mass>
 <inertia>
 <ixx>0.000090623</ixx>
 <iyy>0.000090623</iyy>

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 43 of 49

 <izz>0.000091036</izz>
 <ixy>0</ixy>
 <ixz>0</ixz>
 <iyz>0</iyz>
 </inertia>
 </inertial>

 <collision name="top_collision">
 <geometry>
 <cylinder>
 <!-- Radius and length provided by Velodyne -->
 <radius>0.04267</radius>
 <length>0.07357</length>
 </cylinder>
 </geometry>
 </collision>

 <!-- The visual is mostly a copy of the collision -->
 <visual name="top_visual">
 <pose>0 0 -0.0376785 0 0 1.5707</pose>
 <geometry>
 <mesh>
 <!-- The URI should refer to the 3D mesh. The "model:"
 URI scheme indicates that the we are referencing a Gazebo
 model. -->
 <uri>model://velodyne_hdl32/meshes/velodyne_top.dae</uri>
 </mesh>
 </geometry>
 </visual>

<!-- Add a ray sensor, and give it a name -->
<sensor type="ray" name="sensor">

 <!-- Position the ray sensor based on the specification. Also rotate
 it by 90 degrees around the X-axis so that the <horizontal> rays
 become vertical -->
 <pose>0 0 -0.004645 1.5707 0 0</pose>

 <!-- Enable visualization to see the rays in the GUI -->
 <visualize>true</visualize>

 <!-- Set the update rate of the sensor -->
 <update_rate>30</update_rate>

<ray>
 <noise>
 <!-- Use gaussian noise -->
 <type>gaussian</type>
 <mean>0.0</mean>
 <stddev>0.02</stddev>
 </noise>

 <!-- The scan element contains the horizontal and vertical beams.
 We are leaving out the vertical beams for this tutorial. -->
 <scan>

 <!-- The horizontal beams -->
 <horizontal>
 <!-- The velodyne has 32 beams(samples) -->
 <samples>32</samples>

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 44 of 49

 <!-- Resolution is multiplied by samples to determine number of
 simulated beams vs interpolated beams. See:
 http://sdformat.org/spec?ver=1.6&elem=sensor#horizontal_resolution
 -->
 <resolution>1</resolution>

 <!-- Minimum angle in radians -->
 <min_angle>-0.53529248</min_angle>

 <!-- Maximum angle in radians -->
 <max_angle>0.18622663</max_angle>
 </horizontal>
 </scan>

 <!-- Range defines characteristics of an individual beam -->
 <range>

 <!-- Minimum distance of the beam -->
 <min>0.05</min>

 <!-- Maximum distance of the beam -->
 <max>70</max>

 <!-- Linear resolution of the beam -->
 <resolution>0.02</resolution>
 </range>
</ray>
</sensor>
 </link>

<!-- Each joint must have a unique name -->
<joint type="revolute" name="joint">

 <!-- Position the joint at the bottom of the top link -->
 <pose>0 0 -0.036785 0 0 0</pose>

 <!-- Use the base link as the parent of the joint -->
 <parent>base</parent>

 <!-- Use the top link as the child of the joint -->
 <child>top</child>

 <!-- The axis defines the joint's degree of freedom -->
 <axis>

 <!-- Revolve around the z-axis -->
 <xyz>0 0 1</xyz>

 <!-- Limit refers to the range of motion of the joint -->
 <limit>

 <!-- Use a very large number to indicate a continuous revolution -->
 <lower>-10000000000000000</lower>
 <upper>10000000000000000</upper>
 </limit>
 </axis>
</joint>

</model>

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 45 of 49

</sdf>

ANNEX F – JSON for StartOptimization
{
 "$id": "http://example.com/example.json",
 "type": "object",
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "title": {
 "$id": "/properties/title",
 "type": "string",
 "title": "The Title Schema ",
 "default": "",
 "examples": [
 "StartOptimization"
]
 },
 "ID": {
 "$id": "/properties/ID",
 "type": "string",
 "title": "The Id Schema ",
 "default": "",
 "examples": [
 "abcd23412"
]
 },
 "threads": {
 "$id": "/properties/threads",
 "type": "integer",
 "title": "The Threads Schema ",
 "default": 0,
 "examples": [
 2
]
 },
 "gui": {
 "$id": "/properties/gui",
 "type": "boolean",
 "title": "The Gui Schema ",
 "default": false,
 "examples": [
 false
]
 },
 "params": {
 "$id": "/properties/params",
 "type": "string",
 "title": "The Params Schema ",
 "default": "",
 "examples": [
 "-d -p test"
]
 },
 "SimulationManagers": {
 "$id": "/properties/SimulationManagers",
 "type": "array",
 "items": {
 "$id": "/properties/SimulationManagers/items",
 "type": "string",
 "title": "The 0th Schema ",
 "default": "",
 "examples": [
 "test@desktop-akqg1ea/cpswarm",
 "test2@desktop-akqg1ea/cpswarm"
]
 }
 }
 }
}

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 46 of 49

ANNEX G – JSON for GetProgress and CancelOptimization
{
 "$id": "http://example.com/example.json",
 "type": "object",
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "title": {
 "$id": "/properties/title",
 "type": "string",
 "title": "The Title Schema ",
 "default": "",
 "examples": [
 "GetProgress"
]
 },
 "ID": {
 "$id": "/properties/ID",
 "type": "string",
 "title": "The Id Schema ",
 "default": "",
 "examples": [
 "abcd23412"
]
 }
 }
}

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 47 of 49

ANNEX H – JSON OptimizationResult
{
 "$id": "http://example.com/example.json",
 "type": "object",
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "title": {
 "$id": "/properties/title",
 "type": "string",
 "title": "The Title Schema ",
 "default": "",
 "examples": [
 "OptimiationResult"
]
 },
 "ID": {
 "$id": "/properties/ID",
 "type": "string",
 "title": "The Id Schema ",
 "default": "",
 "examples": [
 "abcd23412"
]
 },
 "fitnessValue": {
 "$id": "/properties/fitnessValue",
 "type": "number",
 "title": "The Fitnessvalue Schema ",
 "default": 0,
 "examples": [
 -2.85
]
 }
 }
}

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 48 of 49

ANNEX I – JSON OptimizationReply
{
 "$id": "http://example.com/example.json",
 "type": "object",
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "title": {
 "$id": "/properties/title",
 "type": "string",
 "title": "The Title Schema ",
 "default": "",
 "examples": [
 "OptimizationReply"
]
 },
 "ID": {
 "$id": "/properties/ID",
 "type": "string",
 "title": "The Id Schema ",
 "default": "",
 "examples": [
 "abcd23412"
]
 },
 "operationStatus": {
 "$id": "/properties/operationStatus",
 "type": "string",
 "title": "The Operationstatus Schema ",
 "default": "",
 "examples": [
 "OK"
]
 }
 }
}

Deliverable nr.
Deliverable Title

Version

D6.5
Initial Integration of External Simulators
1.0 - 30/06/2018

Page 49 of 49

ANNEX J – JSON RunSimulation

{
 "$id": "http://example.com/example.json",
 "type": "object",
 "definitions": {},
 "$schema": "http://json-schema.org/draft-07/schema#",
 "properties": {
 "title": {
 "$id": "/properties/title",
 "type": "string",
 "title": "The Title Schema ",
 "default": "",
 "examples": [
 "RunSimulation"
]
 },
 "ID": {
 "$id": "/properties/ID",
 "type": "string",
 "title": "The Id Schema ",
 "default": "",
 "examples": [
 "sdafsad24312"
]
 },
 "gui": {
 "$id": "/properties/gui",
 "type": "boolean",
 "title": "The Gui Schema ",
 "default": false,
 "examples": [
 false
]
 },
 "params": {
 "$id": "/properties/params",
 "type": "string",
 "title": "The Params Schema ",
 "default": "",
 "examples": [
 "-d -p test"
]
 }
 }
}

	Document History
	Internal Review History
	Table of Contents
	1 Executive Summary
	2 Introduction
	2.1 Scope
	2.2 Background
	2.3 Document Organization
	2.4 Related documents

	3 Simulation and Optimization Environment in the CPSwarm Workbench
	3.1 API
	3.1.1 SOO and Optimization Tool interaction
	3.1.2 SOO and Simulation Managers interaction
	3.1.3 Optimization Tool and Simulation Managers interaction

	4 ROS-based robotics simulation tools
	4.1 Stage
	4.1.1 Control interface
	4.1.2 Simulation settings
	4.1.3 Implementation of the CPS behavior
	4.1.4 Integration with Ground Control Stations
	4.1.5 Other configuration parameters
	4.2 Gazebo
	4.2.1 Control interface
	4.2.2 Simulation settings
	4.2.3 Implementation of the CPS behavior
	4.2.4 Integration with Ground Control Stations
	4.2.5 Other configurations

	4.3 V-REP
	4.3.1 Control interface
	4.3.2 Simulation settings
	4.3.3 Implementation of the CPS behavior
	4.3.4 Integration with Ground Control Stations
	4.3.5 Other configuration parameters
	4.4 ARGoS
	4.4.1 Control interface
	4.4.2 Simulation settings
	4.4.3 Implementation of the CPS behavior
	4.4.4 Integration with Ground Control Stations
	4.4.5 Other configuration parameters

	4.5 jMAVSim
	4.5.1 Control interface
	4.5.2 Simulation settings
	4.5.3 Implementation of the CPS behavior
	4.5.4 Integration with Ground Control Stations
	4.5.5 Other configuration parameters

	4.6 STDR
	4.6.1 Control interface
	4.6.2 Simulation settings
	4.6.3 Implementation of the CPS behavior
	4.6.4 Integration with Ground Control Stations
	4.6.5 Other configuration parameters

	5 Simulation Virtual Machine
	6 Implementation and Integration
	6.1 Data formats of the simulation interfaces in the CPSwarm Workbench
	6.1.1 JSON
	6.1.1.1 StartOptimization
	6.1.1.2 GetProgress and CancelOptimization
	6.1.1.3 OptimizationResult
	6.1.1.4 OptimizationStarted, OptimizationCancelled and OptimizationProgress
	6.1.1.5 RunSimulation
	6.1.2 XML
	6.1.2.1 Optimization Tool configuration
	6.1.2.2 Optimization Tool result
	6.1.3 SDF
	6.1.4 Wrapper
	6.1.4.1 Main()
	6.1.4.2 Sync()
	6.1.4.3 SyncUpdate()
	6.1.4.4 simStep()
	6.1.5 Candidate
	6.1.5.1 getOutput(float netInput[],long inputsize)
	6.2 Integration of FREVO as an Optimization Tool
	6.3 SOO
	6.3.1 Listeners
	6.3.1.1 ConnectionListenerImpl
	6.3.1.2 MessageEventCoordinatorImpl
	6.3.1.3 PacketListenerImpl
	6.4 Simulation Manager
	6.4.1 Listeners
	6.4.1.1 ConnectionListenerImpl
	6.4.1.2 AbstractFileTransferListener
	6.4.1.3 PresencePacketListener
	6.5 Gazebo Simulation Manager
	6.5.1.1 FileTransferListenerImpl

	7 Conclusions
	Acronyms
	List of figures
	List of tables
	References
	ANNEX A – Optimization Tool Configuration
	ANNEX B – Optimization Tool Result
	ANNEX C – SDF world example
	ANNEX D – SDF environment model example
	ANNEX E – SDF Object model example
	ANNEX F – JSON for StartOptimization
	ANNEX G – JSON for GetProgress and CancelOptimization
	ANNEX H – JSON OptimizationResult
	ANNEX I – JSON OptimizationReply
	ANNEX J – JSON RunSimulation

