D5.3 - UPDATED CPSWARM MODELLING TOOL

Deliverable 1D D5.3
Deliverable Title Updated CPSwarm Modelling Tool
Work Package WP5 — CPSwarm Design Workbench

Dissemination Level PUBLIC

Version 1.0
Date 30-06-2018

Status Final

Lead Editor Melanie Schranz (LAKE)
Main Contributors Gianluca Prato (ISMB), Etienne Brosse (SOFTEAM)

Published by the CPSwarm Consortium

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731946.

~ e O
uJar
Document History
Version Date Author(s) Description
Melanie -
0.1 -02-
2018-02-07 Schranz (LAKE) Initial TOC
02 | 2018-05-07 Melanie = 1\ jate initial TOC
' Schranz (LAKE) | =P
Melanie . . .
03 -06-
2018-06-04 Schranz (LAKE) 4.4 Modelling dynamic environment
Melanie .
0.4 -06-
2018-06-13 Schranz (LAKE) Include content for code generation
0.5 2018-06-25 Melanie Include content for modellin
' Schranz (LAKE) 9
10 2018-06-30 Melanie Integrated comments from internal review (DIGISKY, ROBOTNIK)
' Schranz (LAKE) |and updates from SOFTEAM

Internal Review History

Revi .
;‘::ew Reviewer Summary of Comments
Etienne Brosse .
2018-06-28 M ts.
(SOFTEAM) inor comments
2018-06-25 A(E%eBlcs)%r\llTlgo Few modifications and comments.

Deliverable nr.
Deliverable Title
Version

D5.3

Updated CPSwarm Modelling Tool

1.0 -30/06/2018

Page 2 of 21

Table of Contents

Contents

DOCUMENT HISTOIY .ot ss e sass s s sssessaseses

INTEINAl REVIEW HISTOTY .ot ssiesesesssesisse st ssssesesssesesesesesesesessssesssssessssnesens
TabIE Of CONLENTScovemrrricrricerieccriceriiesessise s ssisseesesssessessesnes

1 EXQCULIVE SUMIMAIY .ottt sttt sttt st ettt st st sb st sess st sssnns

2 INEFOAUCTION ...ttt asssnans

vl Ul AW NN

2.1 Scope

2.2 Document organization
2.3 REIGEEA AOCUMENTS. ...ttt sttt ss e et 6

3 CPS Population Design Tool

3.1 DIBSIGN oottt e

3.2 Parameters

33 Future work
4 Modelling Tool
4.1 OVEIVIBW ..ttt s sttt s et ss s ess s st s et esstst s s sessssssassessassasasnessssssasnas

42 SWAIM MOAEIING ottt sttt sttt sttt sttt stnes

4.2.1 Create a new CPSwarm model

4.2.2 Swarm Composition Modelling

4.2.3 Swarm Member Architecture Modelling

424 Swarm Member Behaviour Modelling

43 Swarm Modelling Library

44 DYNaMISIM IN CPS SWAIMS.......couiieieeeriereaeeiseesiseesisessssessssesssse e s s sesessasesssssssssssssessssessssessasessssessasessasesssnssssessaness 13

5 Code GeNeration fOr CPS SYSTEIMSoccurireieceieeeieeessieeseseesiseesissesssesesssesesesisse st ssesesesesesesesesessssesssssessssneseseneseses 15
5.1 CPS'S DENAVIOUT GENETATIONcouriieireirceieceicic it ese sttt sttt erenes 15
511 Code genEration EXAMPIE ... cwceeceieceiecirieesieesiseesssee st esesesesesssesessesssssesssssesesesesessssesssssssssessssnessseseseses 17

5.2 Candidate’'s WrapPer GENEIATION ...t ssses sttt esese st sssesesesesesesesesenes 19

B CONCIUSION ..ttt ssese it sse ettt sens 20
ACTONYIMS ..ottt 21
LISt OF fIQUIES oottt sttt ss bbbttt 21

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 3 of 21
Version = 1.0 -30/06/2018

: - ™

- C g
: NS «
et S R R:—-.'-

uJarrm

1 Executive summary

This deliverable, namely “D5.3 - Updated CPSwarm Modelling Tool", introduces three parts of
implementation of the CPSwarm workbench related to modelling. This includes the CPS population design
tool that will be implemented as entry point for the modelling tool; the updates to the modelling tool itself
together with the design of state machines; and the generation of code for the deployment process using the
modelled state machines.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 4 of 21
Version = 1.0 -30/06/2018

- * L
- o
e T -t LIRS

uJarrm

2 Introduction

As described in CPSwarm deliverable D3.2 - Updated System Architecture & Design Specification, delivered
at M18 - the CPSwarm architecture adopts a launcher-based definition, where each component of the system
is connected to a central launcher able to provide a set of well-defined functionalities as shown in Figure 1.

Modelling .
Models data MC input
Modelling Modelling Monitoring &
Library Tool J ’L Command
A .
. Realtime Runtime
Optimization data command

Tool

Launcher

Hafdware-in-thetloop

(Simulation Orchestrator)

U [

exchange

Simulation =T CPs

Manager Deployment
information

Deployable
i code
Code DT input .| Deployment
Generator Generatred i Tool
code
CPSwarm Workbench Runtime Environment

Figure 1 Overview of the Software Components in CPSwarm (see D3.2 for more information)

This “D5.3 - CPSwarm Modelling Tool” is a public deliverable focused on the Modelling Tool
implementation on CPSwarm M18. It details the M18 status of Modelling Tool component and its
implemented interfaces with related components (including the CPS population design tool and the related
code generation).

LAKE, as deliverable leader, initially drafted the document, which has subsequently been enriched by all
partners’ contributions describing their developments.

2.1 Scope

This deliverable describes the M18 implementation of CPSwarm modelling tool and its connections to other
CPSwarm components. For each component we provide a short description, but focus on concepts and
implementations.

2.2 Document organization

The remainder of this deliverable is organized as follows:

Section 3 describes the concept of the CPS population design tool that will be implemented in Modelio.
Section 4 describes the Modelling Tool and its updates in state machine design. Finally, Section 5 focuses on
the code generation out of the state machines provided by Modelio in Section 4.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 5 of 21
Version = 1.0 -30/06/2018

e T Rt 3R
uJarm
2.3 Related documents
ID Title Reference Version Date
[D3.2] Updated System Architecture & Design Specification D3.1 1.0 30/06/2018
[D4.1] Initial CPS Modelling Library D4.1 1.0 30/09/2017
[D5.2] Initial CPswarm Modelling Tool D5.2 1.0 30/09/2017
[D4.4] Initial Swarm Modeling Library D4.4 1.0 30/10/2017
[D5.1] CPSwarm Modelling Language Specification D5.1 1.0 31/12/2017
Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 6 of 21

Version

1.0 -30/06/2018

3 CPS Population Design Tool

The CPS population design tool (CPDT) is used to define the swarm composition. The main idea is to provide
a simple entry point, where a swarm can be pre-configured through a wizard. This includes the type and
number of CPSs to be included in the swarm. First, we proposed that this tool resides within the launcher (see
2). But, as it needs a direct connection with the modelling library (that only has a connection with the
modelling tool), we decided to implement the CPDT as entry point to the modelling tool in form of a wizard.

3.1 Design

Figure 2 gives a first design example of the CPDT within the launcher. The user can compose the swarm by
selecting existing CPS that is extracted from the modelling library. The user interface could also be drag and
drop based. The modelling tool only needs to be launched in order to adapt the selected models or to add
new ones. When the modelling is done, the changes are saved to the modelling library. If the CPS is saved
under a different name, the CPDT should automatically update the selected swarm composition.

(N4
O

Description of the goal

g,ﬁ Modelling

$ Optimization

Type of CPS MNo. of Swarm Members

. Code
Generation |

Swarm Algorithm

@ Simulation ‘

(EE:I\] Add another CPS type

& Deployment __ Launch Modeling _

Figure 2 CPDT sketched as part of the launcher
3.2 Parameters

The parameters should allow to define a swarm of CPS. We propose to stay on a high level by only selecting
from existing swarm member structures and behaviors. Alternatively, the swarm member structure could be
refined here by allowing parameters such as the communication interface.

Description of the goal
This is a textual description of the goal of the swarm application. This information is especially useful if there
are more than one person working on the project, e.g., a modeler and a programmer.

Type of CPS
This parameter selects one of the existing CPSs from the modelling library. It defines the hardware, i.e., the
swarm member structure. If none of the existing CPSs is appropriate, a new one can be modeled with the

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 7 of 21
Version | 1.0 -30/06/2018

- - ﬁ:s"g"d;;“‘..
uJarm

modelling tool and saved to the modelling library. Also, a very abstract agent could be selected here if only
simulations are to be carried out.
Exemplary options are:

e DIGISKY UAV,

e ROBOTNIK rover,

e Spiderino,

e Add new.

Add another CPS type
This option allows creating heterogeneous swarm populations by simultaneously selecting different types of
CPSs.

Swarm Algorithm

This parameter selects one of the existing swarm algorithms from the modelling library. It defines the
software, i.e, the swarm member behavior. If the user wants to create a custom swarm algorithm, he can
launch the modelling tool to create a state machine from simple behaviors or he can continue to the
optimization pane for evolving an algorithm.

Exemplary options are:

e BEECLUST,

e Random Walk,

e Flocking,

e Evolutionary optimization,
e Add new.

3.3 Future work

In a next step, the CPDT will be implemented in Modelio as Wizard. Together with WP8 and WP4 activities
the hardware description will be collected by the individual industrial partners, and modeled in Modelio. As
soon as they are part of the modelling library, they can be connected with the CPDT and will be available for
selection there.
During the first test phases of the CPDT with the industry partners, we are still open to enlarge the wizard.
For example, there is still the possibility to add more parameters to select in advance, including:
e Swarm member structure
o Sensors
0 Actuators
0 Communication device
e Swarm member behavior
0 Add bio-inspired swarm algorithm
0 Add state machine based swarm algorithm
e Environment
e Optimization
o Fitness function
0 Objective: What needs to be minimized? What needs to be maximized?

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 8 of 21
Version = 1.0 -30/06/2018

4 Modelling Tool

4.1 Overview

The CPSwarm Modelling Tool is built on top of Modelio open source modelling environment as previously
described in Deliverable D5.2. Swarm modelling activity can be succinctly described as the creation and
population of several diagrams or views. The following sections describe how to model a simple but
complete swarm.

4.2 Swarm Modelling
4.2.1 Create a new CPSwarm model

Modelling is always a difficult task to carry out from scratch. In this case, guidance is helpful. The main goal
of this swarm template generation command is to help the Modeler to create a simple CPS swarm model
with all minimum concepts. The CPS swarm generation can be done by right clicking on any package, then
selecting CPSwarm > CPS swarm creation entry as depicted in the following figure (Figure 3).

® CPSwarm project - Modelio 3.6
File Edit Configuration Views Help
X BREEEEBEREE =] 00 Ja aEEEwE
" Model 2| E © @ = v= 0
~ & CPSwarm project
v 5 CPSwarm project

e ;tl CPM T Create diagram...
| CPSWarmLibr % Create element >
s PredefinedTyp
<D .] @ CPSWarm > CPSwarm creation
o efinitions 2
@ Modeler Module >
£ SysML Architect >

%, Add stereotype

Ei Create stereotype..

Delete element Delete
Cut element Ctrl+X
Copy element Ctrl+C
Paste element Ctrl+V

E# Edit element...

Macros >
Pattemns >
= Import/Export >

"2 Check model = - R —
@ Create a model component P Audit| &4 Diag...| 5 Link...

Figure 3 Creating a new swarm modelling

Figure 4 shows the result of the CPS swarm template generation.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 9 of 21
Version = 1.0 -30/06/2018

@ CPSwarm project - Modelio 3.6

File Edit Configuration Views Help
Hae X I FEEEBECBEBEERE B
“z- Model 2 = W @ “o- v = 8
v] CPSwarm project
v ¢ CPSwarm project
v [cpswarm project
v [3 Swarm
[Sensor
[] Swarm Member
[] Swarm
5 Swarm Architecture
v [Environment
E Environment
fal Environment Definition
v [Goal
Fitness Function
= Goal Definition
E Problem
=z Problem Statement
w1 CPSWarmLibrary 0.0.02
] PredefinedTypes 3.6.05
e SlDefinitions 3.6.01

Figure 4 New swarm result

The swarm template generator produces a set of initial diagrams (as shown in Figure 5) that have been
identified as necessary to completely model a CPS swarm.

v = Diagrams
g2 Environment Definition
fig Goal Definition
g7 Problem Statement
75 Swarm Architecture

& Swarm Member Architecture

Figure 5 CPSwarm predefined diagrams

The CPSwarm modeler can modify the initial content following the needs of the specific case study he/she is
modelling. The CPSwarm modeler will find on the right part of each of the diagrams (namely Environment
Definition, Goal Definition, Problem Statement, Swarm Architecture, Swarm member architecture) the
predefined selection of the modelling elements he/she can specifically use for that specific diagram context.

4.2.2 Swarm Composition Modelling

A swarm is composed of one to many Swarm Member. To model this relation, you must use the UML
composition relation from the Swarm block to one or many Swarm Member block. The multiplicity at the end
of the relation indicates the number of Swarm Member instance. Figure 6 depicts a Swarm composed of one
unique Swarm Member.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 10 of 21
Version = 1.0 -30/06/2018

Swarm [

+ swarm membe

Swarm Member

O

r

1

Figure 6 Swarm Architecture Modelling Elements

4.2.3 Swarm Member Architecture Modelling

Another aspect of Swarm Modelling is the specification of each Swarm Member internal architecture. This
specification is made in two times. First, the list of internal components (which can be a controller, a sensor,
or an actuator component) must be defined. Each of this internal component must expose the data it
provides or requires. Figure 7 represents a simple component having two ports respectively named FlowPort
and FlowPort1. FlowPort expresses the fact that the component provides a Boolean value at contrary

FlowPort1 expresses the fact that the component requires a Boolean

Component [}

FlowPort1:boolean

FFlowPort:boolean

Figure 7 Simple sub Component example

The second steps in modelling the internal architecture of a Swarm Member consists in instantiate each
appropriate component and connect them between each other. In Figure 8, the Component predefined
previously has been instanced twice and each port has been connected to model the data flow between the

internal component

Swarm Member

[l :Component FlowPort] FlowPort [l :Component
[q]
b} [k
FlowPort FlowPort1

Figure 8 Swarm Member Architecture Example

4.2.4 Swarm Member Behaviour Modelling

The internal architecture of a Swarm Member is a key aspect of its definition. The second key aspect is its
internal behavior. As defined in Deliverable D5.1, UML state machines are used to model Swarm Member
behavior. Figure 9 depicts the simplest possible Swarm Member behavior. This latter is simply composed of a
State named State. Both Initial and Final state are mandatory to all State Machine. The two transitions

respectively connect the initial State to the State state and the State state to the Final state

Deliverable nr. | D5.3

Deliverable Title | Updated CPSwarm Modelling Tool

Version = 1.0 -30/06/2018

Page 11 of 21

Figure 9 Simple Swarm Member Behaviour

Of course, a real behavior will be more complex. Figure 10 for example represents two states - aka State1 and
State 2 — executed in parallel.

04 b @

Figure 10 Swarm Member Behaviour

To handle the complexity of these state machines it is possible to extract part of them inside another state
machine and then refer this extracted content as a sub state machine. Figure 11 shows the call of a sub state
machine by a particular State.

State: Sub
State Machine

Figure 11 Hierarchical State

4.3 Swarm Modelling Library

As described in deliverable D3.2, the Swarm Modelling library is composed of a set of predefined.
e Environment;

e Cost function;

e Swarm Member;

e Hardware Component;
e Behavior;

This predefined set of elements can be reused, for example Figure 12 shows extract of this modelling library.
In this extract, a component named Controller is model with four possible actions respectively named Send,
Pick, Place, and PickAndPlace.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 12 of 21
Version = 1.0 -30/06/2018

UG
v Turtlebot
W Controller
v s +Send(posin: 2D Pose)
pos in : 2D Pose
v oy +Pick{pos in : 2D Pose)
pos in : 2D Pose
v s +Place{posin: 2D Pose)

pos in : 2D Pose

v o +PickAndPlace{pickPos in : 2D Pose, placePos in : 2D Pose)
pickPos in ;: 2D Pose
placePos in : 2D Pose

' Elevator
v op +up(up in: boolean)
up in : ooolear
v [1] 2D Pose
B +X:]
A +y:integ
A +theta:intege

Figure 12 Part of the Modelling Library

The following illustration shows through a simple behavior modelling, the reuse of the Up action inside
another Swarm Member behavior:

Up
. Do/Up()

Figure 13 Simple reuse of the Modelling Library

4.4 Dynamism in CPS swarms

In the CPSwarm project cyber-physical systems (CPS) operate in real environments. Real environments are
inherently dynamic. Thus, swarms of CPSs should have the ability to cope with multiple, dynamically varying
critical and non-critical constraints coming from the dynamics beyond the CPS control including i)
environment, ii) scenario, and iii) interactions with other systems in the environment. As soon as the CPSs are
able to get along with the run-time dynamics and the corresponding situation-specific control actions,
trustworthy behavior can be ensured in critical CPS solutions.

The key innovative elements in CPSwarm are to enable a population of interacting CPSs that jointly deliver a
task without a central point of coordination. Furthermore, they are able to cope with dynamic reconfiguration
and emergent properties from the environment, scenario, and interaction with other systems.
CPSwarm-designed systems will provide a previously unreachable flexibility, adaptability and capability to
deal with complex, dynamic and heterogeneous problem landscapes. The solutions are self-organized
algorithms, more specifically swarm algorithms. These algorithms lead to a behavior that overcomes many
unforeseeable obstacles and events in real-time, thus reaching the final goal of reliable, scalable, and robust
systems by simultaneously improving trust to humans involved in the loop. Swarms of CPSs operate as a self-
organizing mixed team where particular tasks for each CPS are not predefined at mission start, but
negotiated during mission execution. Such a swarm is highly adaptive to changes in the environment and can
act dynamically.

In this project we won't deal with the modelling of dynamic environments, as this field belongs to the
simulation of swarms of CPS rather than to engineering of CPS swarms. Therein, explicit concepts and
constructs that relate to the real world are modelled. These include the modelling of all possible
environmental changes expressed in state variables, equations, time and state events focusing on the

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 13 of 21
Version = 1.0 -30/06/2018

- - ﬁ:s"g"d;;“‘..
uJarm

constituents involved, the time interval of occurrence, the error rate and the evolution strategy of all parts of
the environment (Helleboogh, et al., 2007), (Dykes, et al., 2015).

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 14 of 21
Version = 1.0 -30/06/2018

- * L
- o
e T -t LIRS

uJarrm

5 Code Generation for CPS Systems

In order to ease the development of new CPSs' applications the CPSwarm workbench supports the use of
model-driven paradigm. The main advantage of this approach consists in the possibility to design CPSs’
behaviors without being concerned about the underling hardware details. Moreover, the focus of the user is
raised from a platform-dependent level to a more application-centric perspective, giving also to not domain-
expert programmers the opportunity to develop new algorithms in the robotic context.
Inside the CPSwarm workbench, the Code Generator (CG) perform two different tasks:

e Generating the whole CPS’s behavior starting from a formal description. In this case, the produced

output will be passed to the Deployment Tool to be installed on the actual CPSs.

e Wrapping an algorithm generated by the Optimization Tool in order to be simulated inside one of
the integrated Simulator Engines.

In the next section this two functionalities will be described in more details.
5.1 CPS’s behaviour generation

In the first half of the project particular attention has been given to the modelling of new CPS behaviors
using Finite State Machines (FSM), as described in Section 4.2.4. In consequence of that, the first release of
the Code Generator supports the generation of code starting from the formal description of a FSM. The
SCMXL' data format has been recognized as a proper language to describe finite state machines, with a
CPSwarm dedicated extension that will be described in the following part of this paragraph. While this format
allows the description of very complex state machines with sub-states (nested state machines inside a single
high-level state) and concurrent states, the first implementation of the Code Generator only supports the
generation of simple state machines with these characteristics:
e The state machine has just one level, so no nested state machines can be generated.

e Each state of the FSM corresponds to one of the functionalities accessible through the CPSwarm
Abstraction Library.

Modeling Tool
i N .
(Behaviour 1 T Behaviour 2
ol = H".
Function A FunctionB =, Function A * Function C .
I| | \
S | | ¥ :
¥ J '-___ Function C
] ~# FunclionB -

FuncionC —— \ x

L 1
Code Generator

!l

Functions Level
Change Lane Shul Down Starl Up

Reach

TakeOil Land Pick Place Position(x, y, z)

CPSwarm Abstraction Library

Figure 14 The role of Code Generator in the CPSwarm workbench

! hitps://www.w3.org/TR/scxml/
Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 15 of 21
Version | 1.0 -30/06/2018

https://www.w3.org/TR/scxml/

uJarm

In Figure 15 can be observed the role of the CG as a “glue” between the modelling level (realized inside the

Monitoring Tool) and the deployment of the code on the actual CPS. To achieve this task, the CG relies on

the Abstraction Library that provides a set of platform-independent functionalities that can be executed by

the robot.

Due to the very schematic and repeatable structure that all algorithms defined using a FSM have, the

template-based technique has been selected as the most proper approach to complete the code generation

task. As already depicted in D3.1, a template-based code generator can be described by his 3 main

components (summarized in Figure 15):

e The data: this part corresponds to the set of information needed to produce the output. In order to

be correctly processed by the Code Generator, the data have to conform to a specific data format
(e.g. SCXML).

- ».

- &

) NS
et S

e The templates: a template is text file and it is usually composed by a static part that appears in the
output “as it is" and a dynamic part written with a template meta-code. This code contains all the
directives that are processed at runtime (together with the input data) by a template engine to
produce the final source code, also called output. A set of templates is prepared for each target
runtime platform (ROS, Python, ...). To select the correct template, the CG must be configured with
the target runtime environment.

e The output: the source code that is produced as result of the generation task.

Inpu; Stan:iard makes use
201 d======== Template
<scxml ... /> Libral'y
formatted with linput
Runtime Input Template
input i roduces]
- inpu Engine F’_._ Output
i 0,0,

Figure 15 Code Generator main components

In this implementation of the CPSwarm GC the code generation process is driven by a Java-based template
engine called Velocity®. This tool was chosen because of his powerful and simple template language called
Velocity Template Language (VLT). In addition to this template engine, the Apache Commons SCXML library®
has been used to parse the SCXML input files.

With the first set of templates it is possible to generate a code implementation of a state machine that relies
on the SMACH* library, a Python-based project that let easily implement and execute State Machine-
designed algorithm. The choice has fallen to this library not only for its extreme simplicity and scalability, but
also for its direct integration with ROS, the runtime environment supported by 3 out of 4 of the CPS
platforms that will be used in our use case scenarios.

To better clarify all the aspects presented up to this point, a simple example of a code generation process
extract from the Search and Rescue scenario is now presented.

2 http://velocity.apache.org/
3 Apache Commons SCXML
* http://wiki.ros.org/smach
Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 16 of 21
Version = 1.0 -30/06/2018

http://velocity.apache.org/engine/2.0/overview.html
http://commons.apache.org/proper/commons-scxml/index.html
http://wiki.ros.org/smach

5‘ .
Bt

uJarrm

- ».

- &

) NS
et S

5.1.1 Code generation example

In Figure 16 a simple state machine for a flying drone is presented. It is composed by 2 states:
e Idle: in this state the drone just waits for a fixed amount of time without executing any
specific action. After this wait, the "missionStart” event is triggered and the TakeOff state is
selected as next state.

e TakeOff: when this state is reached the procedure to take-off is triggered and the drone
reach a predefined height.

(" Idle h 4 takeOff h

missionStart

/ -

Figure 16 Simple FSM

h 4

wait() takeOff()

During the design phase, each state of the FSM is associated with a specific functionality exposed by the
Abstraction Library implementation aboard the drone. For instance, as shown in Figure 17, the TakeOff state
is linked with the MavROS Takeoff functionality.

Abstraction Library

Functionality State Machine

TakeOff MavROS

Type: ROS Action

#goal definition (height to reach)
float64 height_to_reach (takeOff \

#result definition (final position) takeOff()
geometry_msgs/PoseStamped pose

Figure 17 Linking a State with an Abstraction Library functionality

When the modelling phase is completed, the resulting FSM is translated by the modelling tool in an SCXML
file as can be seen in Figure 18. The SCXML format has been extended with specific CPSwarm tags to
describe how the Abstraction Library functionality should be called inside the state. In particular, The CG
receive two information in order to correctly call the function takeOff():
e The type of the functionality. In this case the value is "ROS_ACTION". This information is used to
select the correct templates during the generation process.

e A description of inputs and outputs of the function. This information is used to provide all the
needed inputs to the function and to properly manage its outputs.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 17 of 21
Version = 1.0 -30/06/2018

--’;T:l ;;ésiﬁfigki
wJar
<?xml version="1.0" encoding="UTF-8"72>
<scxml xmlns="http://www.w3.0rg/2005/07/scxml"
xmlns:cpswarm="http://my.custom-actions.domain/cpswarm/CUSTOM"
version="1.0" initial="Idle" name="Sar"=>

<state id="Idle">
<transition event="missionStart" target="TakeOff" /=
<[state>

<state id="TakeOff"=>
<invoke id="takeoff_action" type="ROS_ACTION">
<cpswarm:input type="TakeOffAction" paramlist="altitude" wvalues="5"/>
<cpswarm:output paramlist="finalpose" vartypes="PoseStamped" />
</invoke>
<fstate>
</scxml=>

Figure 18 SCXML description of the example FSM

Using the SCXML file and the selected set of templates ready for the desired runtime environment, the code
is
finally generated. In Figure 19, there is the final output of the whole process as a Python ROS node

implementing the designed FSM using the SMACH library.
#!/usr/bin/env python

import rospy
import smach
import smach_ros
import actionlib
import mavros_msgs

from state_machine_demo.msg import *
from mavros_msgs.srv import *

define state Idle|
class Idle(smach.State):
def __init_ (self):
smach.State. _init_ (self, outcomes=['missionStart'])

def execute(self, userdata):
rospy.loginfo('Executing state Idle')
rospy.sleep(10.0)
return 'missionStart’

def main():
rospy.init_node('behaviour')

Create a SMACH state machine
sm = smach.StateMachine(['succeeded', 'aborted’, 'preempted'])

Open the container
with sm:
Add states to the container
smach.StateMachine.add('Idle"', Idle(),
transitions={'missionStart': 'TakeOff'})

smach.StateMachine.add('TakeOff"',
smach_ros.SimpleActionState(' takeoff_action', TakeoffAction),
transitions={'succeeded':'succeeded'})

Create and start the introspection server

sis = smach_ros.IntrospectionServer('my_smach_introspection_server', sm, '/SM_R0OOT')
sis.start()

rospy.sleep(1.8)

Execute SMACH plan

outcome = sm.execute()

rospy.signal_shutdown('All done.')
if __name__ == '__main__':

main()

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 18 of 21
Version | 1.0 -30/06/2018

- - i:‘"—‘;‘“‘{;“&
uJarm

Figure 19 Final Code Generator output

5.2 Candidate’s wrapper generation

In this paragraph the second task that the Code Generator must fulfill is described. Even if this functionality is
not implemented yet, a quick overview is given for the sake of completeness and to present the current
understanding related to this process.
Other than generating a behavior to be deployed on an actual CPS, the CG is also involved during the
optimization process of an algorithm evolved using the Optimization Tool. In this case, it provides a service
to the Simulation and Optimization Environment Orchestrator (also known as SOEnvO). Since the candidate is
a C code produced by the Optimization Tool, in order to be executed inside one of the Simulation Engine
supported by the CPSwarm workbench (e.g. Gazebo) a wrapper code is needed. The code generator will
provide this wrapper to let the SOEnvO simulate the candidate algorithm at each step of the optimization
process.
The candidate represents the decision-making unit in charge of elaborating the input data and deciding the
next action to be executed by the CPS. As "next action" we mean a call to one (or more than one) of the
services exposed by the Abstraction Library. The wrapper serves as an intermediate layer between the
decision-making unit and the simulated CPS. Therefore, the wrapper defines how sensors are read and
provide their data to the candidate. Moreover, it interprets the outputs of the candidate linking the selected
action with its real implementation inside the Abstraction Library. A more detailed description of the
candidate and the wrapper is presented in D6.5 (Sections 6.1.3 and 6.1.4).
While still not completely defined, a first list of inputs needed by the CG to generate the wrapper is foreseen:
e The target runtime environment that is executed inside the simulation engine (in the first release ROS
will be supported).

e A description of inputs and outputs needed by the candidate algorithm. At the moment a possible
format that is still under evaluation is SDF> with a specific CPSwarm extension, if needed.

® http://sdformat.org/
Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 19 of 21
Version = 1.0 -30/06/2018

http://sdformat.org/

: - ™

- C g
: NS «
et S R R:—-.'-

uJarrm

6 Conclusion

This deliverable describes the status of the CPSwarm Modelling Tool due to M18. Even if the presented
features (CPS population design tool, concepts for modelling, code generation) have not yet been fully
developed or integrated, they already show good collaboration and result among them and project’s
partners.

Deliverable nr. | D5.3
Deliverable Title | Updated CPSwarm Modelling Tool Page 20 of 21
Version = 1.0 -30/06/2018

~ L‘Dﬂ‘ FI:Y%“%
Acronyms
Acronym Explanation

CG Code Generator

CPDT CPS population design tool

CPS Cyber Physical System

FSM Finite State Machine

ROS Robot Operating System

SCXML State Chart XML

SOEnvO Simulation and Optimization Environment Orchestrator

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

List of figures

Figure 1 Overview of the Software Components in CPSwarm (see D3.2 for more information)
Figure 2 CPDT sketched as part of the launcher
Figure 3 Creating a new swarm modelling
Figure 4 New swarm result
Figure 5 CPSwarm predefined diagrams
Figure 6 Swarm Architecture Modelling Elements
Figure 7 Simple sub Component example
Figure 8 Swarm Member Architecture Example
Figure 9 Simple Swarm Member Behaviour
Figure 10 Swarm Member Behaviour
Figure 11 Hierarchical State
Figure 12 Part of the Modelling Library
Figure 13 Simple reuse of the Modelling Library
Figure 14 The role of Code Generator in the CPSwarm workbench
Figure 15 Code Generator main components

Figure 16 Simple FSM

Figure 17 Linking a State with an Abstraction Library functionality
Figure 18 SCXML description of the example FSM
Figure 19 Final Code Generator output

Deliverable nr. | D5.3

Deliverable Title | Updated CPSwarm Modelling Tool

Version = 1.0 -30/06/2018

Page 21 of 21

10
10
11
11
11
12
12
12
13
13
15
16
17
17
18
19

	Document History
	Internal Review History
	Table of Contents
	1 Executive summary
	2 Introduction
	2.1 Scope
	2.2 Document organization
	2.3 Related documents
	2.3.1

	3 CPS Population Design Tool
	3.1 Design
	3.2 Parameters
	3.3 Future work

	4 Modelling Tool
	4.1 Overview
	4.2 Swarm Modelling
	4.2.1 Create a new CPSwarm model
	4.2.2 Swarm Composition Modelling
	4.2.3 Swarm Member Architecture Modelling
	4.2.4 Swarm Member Behaviour Modelling

	4.3 Swarm Modelling Library
	4.4 Dynamism in CPS swarms

	5 Code Generation for CPS Systems
	5.1 CPS’s behaviour generation
	5.1.1 Code generation example

	5.2 Candidate’s wrapper generation

	6 Conclusion
	Acronyms
	List of figures

