

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D4.1 INITIAL CPS MODELING LIBRARY

Deliverable ID D4.1

Deliverable Title Initial CPS modeling library

Work Package WP4 – Models and algorithms for CPS Swarms

Dissemination Level PUBLIC

Version 1.0

Date 06-10-2017

Status FINAL

Lead Editor Alessandra Bagnato (SOFTEAM)

Main Contributors Melanie Schranz (LAKE), René Reiners (FRAUNHOFER), Etienne
Brosse (SOFTEAM), Wilfried Elmenreich (UNI-KLU), Omar
Morando (DGSKY), Enrico Ferrera (ISMB), Claudio Pastrone
(ISMB), Bálint József Jánvári (SLAB), Regina Krisztina Bíró
(SLAB)

Published by the CPSwarm Consortium

Ref. Ares(2017)4904847 - 07/10/2017

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 2 of 33

Document History

Version Date Author(s) Description

0.1 2017-05-16
Alessandra

Bagnato
(SOFT)

First Draft

0.2 2017-06-07 Melanie
Schranz (LAKE) Extending the TOC with Chapter 4, 5 and 6

0.3 2017-06-07

Alessandra
Bagnato and

Etienne
Brosse(SOFT)

 Adding foreseen content for Sections 4.1, 4.2, 4.3 (examples of
models)

0.4 2017-08-06 Melanie
Schranz (LAKE) Adding content for 6.2.2 Human-Swarm Interaction

0.5 2017-08-27
Alessandra

Bagnato
(SOFT)

Integration of various contributions

0.6 2017-09-04
Alessandra

Bagnato
(SOFT)

Integration of SLAB & FIT contributions

0.7 2017-09-08
Alessandra

Bagnato
(SOFT)

Integration of LAKE contributions, added a paragraph to the
conclusion to show the relation to D4.4

0.71 2017-09-11 Etienne Brosse
(SOFT) Comment response

0.72 2017-09-12
Alessandra

Bagnato
(SOFT)

Integration of ISMB contributions on IoT Entity Modeling
background

0.73 2017-09-12
Alessandra

Bagnato
(SOFT)

Integration of LAKE contributions on 7.2 and conclusions

0.8 2017-09-29
Alessandra

Bagnato
(SOFT)

Addressing LAKE and ISMB review comments

0.81 2017-09-29
Alessandra

Bagnato
(SOFT)

Including FIT feedback and ISMB revision to IoT modelling
background

1.0 2017-10-06
Alessandra

Bagnato
(SOFT)

Final Integrated Version

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 3 of 33

Table of Contents

Document History .. 2
Table of Contents ... 3
1 Executive summary .. 4
2 Introduction .. 5

2.1 Scope .. 5
2.2 Document organization ... 5
2.3 Related documents.. 5

3 Background State-of-the-Art of the CPSwarm Initial modelling library .. 6
3.1 Embedded and CPS modeling .. 6

3.1.1 LineFollowRobot Example ... 7
3.1.2 Single Tank Example .. 8
3.1.3 Three Tank Example ... 9

3.2 Security and safety modeling .. 10
3.3 IoT Entity Modeling ... 13

4 Initial Libraries for CPS Models ... 16
4.1 CPSWarm Libraries .. 16
4.1.1 Swarm member ... 17
4.1.2 Environment ... 17
4.1.3 Goal.. 18

5 Use Case of the Initial Catalog of CPS Models - the EmergencyExit Example ... 19
5.1 Swarm member ... 19
5.2 Environment ... 21
5.3 Goal.. 22

5.4 Future Work ... 22
6 Initial Communication among the Models .. 24
7 Human-in-the-Loop .. 26

7.1 Roles of Humans in the Design of CPS Swarms in the CPSwarm Workbench .. 26
7.1.1 Modeller .. 26
7.1.2 Software Developer .. 27
7.1.3 Engineer .. 27
7.1.4 Operator ... 27

7.2 Future Work on Human-Swarm Interaction .. 28
8 Conclusions ... 30
Acronyms ... 31
List of figures .. 31
9 References ... 32

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 4 of 33

1 Executive summary

This deliverable, namely “D4.1 Initial CPS modeling library”, introduces the whole new CPSwarm initial
modelling library and its initial Catalogue for CPS Models.
The deliverable starts introducing the background state-of-the-art of our CPSwarm first modelling library. We
present the existing approaches that were used to be adapted/extended for swarm integration and where
new CPS models must be developed. More specifically, in the following we describe the available open
source approaches and examples we considered while discussing Embedded and Cyber-Physical Systems
(CPS) modelling, Security Modeling and IoT Entity Modeling. We already used part of the background
described in this deliverable as a basis for the whole new CPSwarm initial modelling library that is described
in Section 4 and we will keep using it for the future versions of the library.
The deliverable then presents the structure of the Emergency Exit example of the Initial CPS modeling library,
the initial reasoning on the communication among the Models and the Human-in-the-Loop of the models
that will be further extended in the future versions of this deliverable.

This deliverable, D4.1 Initial CPS modeling library, is a software deliverable that include the CPSwarm
developed models till M9 within WP4, the Emergency Exit example models are available on the Modelio
forge at http://forge.modelio.org/projects/cpswarm.

http://forge.modelio.org/projects/cpswarm

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 5 of 33

2 Introduction

Cyber-Physical Systems (CPS) find applications in many large-scale, safety-critical domains e.g.
transportation, smart cities, etc. As a matter of fact, the increasing interactions amongst different CPS are
starting to generate unpredictable behaviours and emerging properties, often leading to unforeseen and/or
undesired results. Rather than being an unwanted by product, these interactions could, however, become an
advantage if they were explicitly managed, and accounted, since the early design stages. The CPSwarm
project,
aims at tackling these kinds of challenges by easing development and integration of complex herds of
heterogeneous CPS. Thanks to CPSwarm, systems designed through a combination of existing and emerging
tools, will collaborate on the basis of local policies and exhibit a collective behaviour capable of solving
complex, real-world, problems [32].
D4.1 – “Initial CPS modeling library” is a public document defining the CPSWarm publicly available CPS
models defined till CPSwarm at M9 of the project.
The models are developed by the project team and hosted on the CPSwarm Modelio forge at
http://forge.modelio.org/projects/cpswarm
The deliverable introduces the models and the modelling approaches that allowed the team to create the
initial CPSwarm modeling library. More specifically, in the following we describe the available open source
approaches and examples we considered for discussion as the Embedded and Cyber-Physical Systems (CPS)
modelling, Security Modeling and IoT Entity Modeling. We already used part of the background described in
this deliverable as a basis for the whole new CPSwarm initial modelling library that is described in Section 4
and we will keep using it for the future versions of the library.
The deliverable then presents the structure of the Emergency Exit example of the Initial CPS modeling library,
the initial reasoning on the communication among the Models and the Human-in-the-Loop of the models
that will be further extended in the future versions of this deliverable.

Softeam, as deliverable leader, initially drafted the document, which has subsequently been enriched by all
partners’ contributions with existing background CPSs models’ examples and the agreed CPSwarm models
structure for our initial library.

2.1 Scope

This deliverable provides an analysis of the background, the agreed CPSwarm models structure and all
reasoning behind the current CPS models available so far within the CPSwarm Initial Model Library.

2.2 Document organization

The remainder of this deliverable is organized as follows:

Section 3 describes the background state-of-the-art model examples of our CPSwarm first modelling library,
firstly describing background of the project in Embedded and Cyber-Physical Systems (CPS) modelling
thenIoT Entity Modeling. and in Security Modeling. Section 4 describes the project evolutions with respect to
those modelling techniques within the whole new CPSwarm initial modelling library. Sections 5 details the
EmergencyExit model example available on the CPSwarm forge. Section 6 describes Initial Communication
among the Models while Section 7 details Human-in-the-Loop. Eventually Section 8 draws conclusions and
provides a first feedback.

2.3 Related documents

ID Title Reference Version Date
[D9.2] Initial Project Website and Advertising Materials D9.2 1.0 31/03/2017

[D3.1] Initial System Architecture Analysis & Design
Specification D3.1 1.0 30/06/2017

[D2.1] Initial Vision Scenarios and Use Case Definition D2.1 1.0 30/04/2017
[D5.2] Initial CPSwarm Modelling Tool D5.2 1.0 06/10/2017

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 6 of 33

3 Background State-of-the-Art of the CPSwarm Initial modelling library

This paragraph describes the background, state-of-the-art knowledge we took advantage of to build our
CPSwarm Initial modelling library and the background we will also use for our Final modelling library.
We present the existing approaches that were studied to be adapted/extended for swarm integration and
where new CPS models must be developed.
In particular, the following three sections analyse and describe the available open source approaches and
examples we considered while discussing Embedded and Cyber-Physical Systems (CPS) modelling, Security
Modeling and IoT Entity Modeling.
We already used part of the background described in the following Sections as a basis for the whole new
CPSwarm initial modelling library that is described in Section 4 and we will keep using it for the future
versions of the library. A resulting example included in the library is presented in Section 5.

3.1 Embedded and CPS modeling

The main source of background for embedded and CPS modeling for CPSwarm is the INTO-CPS project[29].
The INTO-CPS H2020 Project started in January 2015 and will last till December 2017 and aims to develop a
model based tool chain for CPS development. The project integrates both Hardware-in-the-Loop (HiL) and
Software-in-the-loop (SiL).

The INTO-CPS project makes use of UML and SysML [6] profiles to develop an INTO-CPS profile that is used
to map to FMU concepts [1]. Model-based systems engineering (MBSE) is used for test automation, high level
simulation using the FMU model exchange mechanism with simulation engine and related tools; while code
generation and test automation is also in the scope of the project via the usage of tools such as RT-Tester
Model-Checker, Overture resulting in platform-independent C source code.
The project aims to develop an integrated tool chain that focuses around a core Co-Simulation Orchestration
Engine and involves tools such as Modelio [3], Overture, 20-Sim [2], OpenModelica and RT-Tester. Test
Automation, Design Space Exploration and Code generation is also in the scope of the INTO-CPS project as
showed in Figure 1 INTO-CPS Project ToolChain.

Figure 1. INTO-CPS Project ToolChain

INTO-CPS is built around the FMI (Functional Mockup Interface) [1] standard that allows FMI co-simulation
and model exchange. Model-exchange takes place when the FMU is imported into a simulation tool and
handled as a black box; whereas FMI’s co-simulation is based on a master-slave architecture.
The SysML profile is used in the project to develop Architecture Structure Diagrams as well as Connection
diagrams, resulting in the INTO-CPS UML profile, which use a subset of SysML block and internal block
diagrams respectively and define specific semantics for their usage.
The INTO-CPS profile is used to develop CPS models in Modelio UML environment [7]. SysML is also mapped
to FMI concepts via the INTO-CPS profile, while allows to export the high-level models in form of

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 7 of 33

automatically generated FMI which are then taken as input by the Orchestration Engine for simulation and
Design Space Exploration (DSE) purposes.
The INTO-CPS project GitHub page [4][5] provides some useful modeling examples, all models are designed
with Modelio open source INTO-CPS module [8]. For each example the Architecture and Connection
diagrams available in the INTO-CPS profile are analysed.

3.1.1 LineFollowRobot Example

Two versions are present for an application where the intent is to control the robot’s body by means of a
controller and have sensors for the movement control (an optional 3D component is present for visualization
in other tools).

3.1.1.1 First LineFollowRobot example

The application intent is to control the robot’s body by means of a controller and have sensors for the
movement control (an optional 3D component is present for visualization during FMU co-simulation):
The example models one CPS and uses an Architecture and two Connection diagrams available in the INTO-
CPS profile. The example comes from Robotics domain.
The Architecture Diagram in Figure 2 indicates a system consisting of a Robot that contains a controller, body
and a sensor (all subsystems). There is also a 3D visualization cyber component that is present.

Figure 2. LineFollowRobot architecture diagram

Figure 3. LineFollowRobot First Connection Diagram

The first connection diagram in Figure 3shows an instance of the robot, where the controller is connected to
the body which in turn is connected to two sensor instances by connectors. The input from the sensor
instances go to the controller.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 8 of 33

The second connection diagram in Figure 4 shows a second instance of the robot, where the controller is
connected to the body which in turn is connected to the two instances of the sensor, and a 3D visualization
component by connectors. The input from the sensors go to the controller and the 3D visualization
component.

Figure 4. LineFollowRobot Second Connection Diagram

3.1.2 Single Tank Example

The Single Tank example models one CPS and uses an Architecture and a Connection diagram available in
the INTO-CPS profile. The example comes from the water tank application to control the water level of tank
by means of a controller.

The architecture diagram in Figure 5 indicates a system consisting of a water tank (physical component) and
a Controller (cyber component) of the CPS. The connection diagram in Figure 6 indicates the flow between
the water tank and the controller component.

Figure 5. Single Tank Example Architecture Diagram

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 9 of 33

Figure 6. Single Tank Example Connection Diagram

3.1.3 Three Tank Example

The Three Tank example models one CPS and uses an Architecture and a Connection diagram available in the
INTO-CPS profile. The example comes from the water tank application to control the water level of the tanks
by means of a controller.

As compared to the single tank example, this example uses three tanks. The architecture diagram in Figure 7
indicates a system consisting of two water tanks (subsystem components) and a Controller (cyber
component) of the CPS.
Each water tank is then composed of Tanks (physical components) and other physical components such as
Pipe, Drain etc. So, there is an additional hierarchical layer as compared to the single tank example.
Additional data types are also specified such as Flowrate and water level along with a user defined
enumeration.

The connection diagram in Figure 8indicates the flow between the water tank 1 to water tank 2 and then
from water tank 2 to the controller component. component) of the CPS. The connection diagram indicates
the flow between the water tank and the controller component.

Figure 7. Three Tank Example Architecture Diagram

Figure 8. Three Tanks Example Connection Diagram

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 10 of 33

3.2 Security and safety modeling

Security modeling aims to find and systematically represent the ways how a system and its components can
be exploited by an attacker. The following sections contain methodologies used for security modeling in
CPS, with a few examples of relevant modeling tools.

3.2.1 Threat modeling in general

Usually one of the first steps of conducting a security analysis, threat modeling takes a look at the
system from the attackers’ perspective. Its goal is to identify high value assets, as well as potential
vulnerabilities and threats. Over time, several methodologies have been developed to establish a
systematic way to conduct security analysis, the most famous of which is STRIDE1 / DREAD2, the
words themselves being mnemonics for their respective categories. Using these methodologies,
threats can be identified, risks can be assessed and decisions can be made on the development of
countermeasures.

3.2.2 Failure mode and effects analysis (FMEA)
As a structured and systematic technique for failure analysis, FMEA has been in use for over 50 years
to assess the reliability and safety of critical systems. Its main goal is to identify failure and eliminate
(or at least minimize) the number of catastrophic failure conditions. It is an inductive process, as it
works with a single failure at a time and examines its effect on the system as a whole. The analysis
aims to identify and eliminate all single points of failure for the system, and should be conducted in
parallel with the design process, to minimize the cost of developing countermeasures. Figure 9
shows the FMEA flowchart.

Figure 9. FMEA flowchart [15]

3.2.3 Fault tree analysis (FTA)
Using Boolean logic to combine fault indications from system components, FTA builds an event tree
for system failures. Deductive reasoning is used to determine how different events contribute to a
single system failure condition – starting from the top-down, from the system state that needs to be
avoided, and working backwards, trying to establish when that condition can occur. When events on

1 Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, Elevation of privilege
2 Damage, Reproducibility, Exploitability, Affected users, Discoverability

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 11 of 33

which such a tree is built are combined with their probabilities, the tree itself can be used to
ascertain the probability of system failure and to identify areas in need of additional
countermeasures. A welcome side-effect of the analysis is that resulting graph can also be used as a
service manual for identifying the root cause of system problems. Figure 10 shows the fault tree
analysis on a vehicle headlamp.

Figure 10. Fault Tree Analysis on a vehicle headlamp [16]

3.2.4 Attack impact analysis

Attack impact analysis is a similar approach to the FMEA method from the perspective of safety. The
use of the attack impact analysis tool presented in [14] is to model graphically how a vulnerability
can affect a given component. A simple example is presented to illustrate the method: a temperature
controller with two sensors (Sensor 1 and Sensor 2) connected to it (see Figure 11). Based on the
sensor inputs, the controller activates the heater or cooler components.

Figure 11. A temperature controller with two sensors [14]

Since it is assumed that the sensors are physically exposed to any attacker, it is possible to inject
compromised data to the controller to change the outputs to the heater or cooler. The vulnerability
identified here is physical exposure depicted on Figure 12 with the data flow shown between the
sensors and the cooler and heater actuators.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 12 of 33

Figure 12. Physical exposure vulnerability [14]

3.2.5 Attack trees

The attack tree approach identifies possible threats with conceptual diagrams called attack trees
consisting of one root node, internal nodes, and leaf nodes. From the bottom up, nodes are
conditions which must be satisfied in order to make the direct parent node true. There are two types
of parent nodes: Type AND and Type OR as in Figure 13. In the first case, every child node must be
satisfied; in the second case, even one is enough. When the root node of an attack tree is satisfied,
the attack is complete.

Goal
OR

Action

Action

Goal
AND

Action

Action

Figure 13. AND and OR example [17]

An example for attack trees can be given from the H2020 COSSIM project [17] aiming to provide an
integrated CPS simulation framework. Figure 6 depicts an attack tree describing an attacker’s
objective to obtain confidential data sent between the COSSIM Framework elements. Figure 14
shows how Obtain user data attack tree from the COSSIM project.

Obtain COSSIM
user data

Obtain data via
exploit

Obtain data via
eavesdropping

Exploit processing
subsystem

Exploit network
subsystem

Exploit energy
subsystem

Obtain data via
side channel attack

Install malware on
user machine

Figure 14. Obtain user data attack tree from the COSSIM project [17]

The internal and child nodes represent sufficient attacks to reach the root node representing the goal
of the adversary. It suggests that an attacker may be able to:

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 13 of 33

1. obtain user data by exploiting a vulnerability in the COSSIM processing subsystem's
implementation, and reading the data via direct memory access;

2. perform eavesdropping on the communication between different components, and obtain
data in that way as well;

3. perform a side channel attack against the processing subsystem or energy subsystem;

4. plant malware on the COSSIM user's computer, and steal the confidential data from the user
directly.

A slightly different approach following the same logic as described above is an attack tree analysis
tool presented in [14] follows a top-down approach by showing all the attacks that might
compromise a component. Similarly, to the attack impact analysis, it is used to represent
vulnerabilities concerning safety. The same example scenario with the temperature controller is used
in Figure 15 to visually present the ways of compromising the cooler, as an example.

Figure 15. Ways of compromising the cooler [14]

This analysis tool includes both a standalone editor to create attack trees from scratch and an attack
tree generator which can be used on a given component’s attack impact analysis.
The two latter modeling tools for security analysis (attack impact, attack tree) are open source and
are extensions of the Architecture Analysis & Design Language (AADL), and can be downloaded from
[18].

3.2.6 Security-aware Functional modeling
This approach was proposed in [19] to model and simulate system-level attacks for the concept
design of cyber-physical systems. On contrary to traditional functional models representing system
functionality and data flow, security aware functional modeling expands this concept and includes
cybersecurity functions, thus providing means to both analyze the effect of cyber and physical
attacks on the system and to refine the design of CPS and integrate cybersecurity countermeasures
(see [19] for an example). Software tools are available to model the system and its security functions
and environmental conditions3.

3.3 IoT Entity Modeling

Within CPSwarm, we consider also CPSs able to communicate with external IoT infrastructures. Telemetry
data, as well as data generated by CPS payloads (e.g., thermal imaging, air quality parameters, etc.) can be
monitored through the CPSwarm Monitoring and Configuration Tool. In this kind of scenario, CPS itself can
be considered as an IoT sensing device.

3 https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 14 of 33

In IoT domain it is important to model sensing devices, and consequently generated data, in order to
guarantee syntactic and semantic interoperability with the infrastructure and the applications. The central
concept around the modelled IoT sensors is that they are mainly data sources performing Observations.
One of the most used modelling approaches based on the Observations concept is the OGC Sensor Things
API [26] standard. The OGC SensorThings modelling approach (see Figure 16) follows the ITU-T definition,
i.e., regarding the Internet of Things, where a Thing is defined as an object of the physical world (physical
things) or the information world (virtual things) that is capable of being identified and integrated into
communication networks [23]. The Location entity locates the Thing or the Things it is associated with. A
Thing’s Location entity is defined as the last known location of the Thing. A Thing’s HistoricalLocation entity
set provides the current (i.e. last known) and previous locations of the Thing with their time. A Datastream
groups a collection of Observations and the Observations in a Datastream measure the same
ObservedProperty, and are produced by the same Sensor. A Sensor is an instrument that observes a property
or phenomenon with the goal of producing an estimate of the value of the property. An ObservedProperty
specifies the phenomenon of an Observation. An Observation is an act of measuring or otherwise
determining the value of a property. An Observation results in a value being assigned to a phenomenon. The
phenomenon is a property of a feature, the latter being the FeatureOfInterest of the Observation. In the
context of the Internet of Things, many Observations’ FeatureOfInterest can be the Location of the Thing. For
example, the FeatureOfInterest of a wifi-connected thermostat can be the Location of the thermostat (i.e. the
living room where the thermostat is located in). In the case of remote sensing, the FeatureOfInterest can be
the geographical area or volume that is being sensed.

Figure 16. The OGC Sensor Things model

Several EU-funded projects, such as Almanac [20], Amazon IoT [22], FOODIE [21], etc., adopt this modelling
approach.
Other than a Sensing Profile, OGC Sensor Things model defines also a Tasking profile, where the concept of
Actuator is introduced, modelled according to its capabilities.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 15 of 33

In Figure 17 some example of IoT device data modelling from [24] are shown, where different observed
properties are sensed (e.g. temperature, water vapor in the air, atmospheric pressure, etc.) by relevant
sensors (e.g. temperature sensor, humidity sensor, barometer, etc.).

 Figure 17. OGC Modelling Example

Each sensor generates a stream of data (datastream) composed by the corresponding observations (e.g. 25
celsius, 35 %, 1000.1 hPa, etc.). Sensors are embedded in a physical object, or Thing (e.g. SEnviro sensor),
which could be physically deployed in a specific Location.
Other modelling approaches are based on a similar concept of Observation. Linksmart.net [25] provides a
straightforward model for representing objects in the physical world and their properties, and map them to
software resources that allow control and reading of data about the physical objects. The three main
concepts are IoTEntity, IoTResource and IoTWorld. An IoTEntity represents a physical entity, e.g. a house, a
car or a door. IoTEntity corresponds to the IoT-A [26] concept of Virtual Entity. An IoTEntity has properties: a
house may have indoor temperature and energy consumption; a door may be locked or unlocked, opened or
closed. IoTStateObservations represent the states of these properties at different points in time – typically
generated by an IoTResource connected to a physical sensor. IoTResources are software objects that provide
IoT Services for applications and end-users for retrieving and analysing data about the physical world as well
as invoking actions like switching of a light. Some examples of IoTResources are software objects
representing actuators, sensors, data streams, databases, etc. It could represent physical, functional or
organizational units in some application domains. For instance, you can model your house as one IoTWorld,
or an office, a complete building or even a whole city, it depends on the need of your application. The
IoTWorld is accessed through a Linksmart.net software defined gateway.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 16 of 33

4 Initial Libraries for CPS Models

In this Section, we make a first definition of the CPSwarm library for CPS models. The overall idea is to have a

library for the modeller that contains certain predefined models. These models can be reused, changed or
added by the modeller. Such a library structure supports the process of modelling swarms of CPSs.

4.1 CPSWarm Libraries

The models in the libraries are separated into three groups of libraries: swarm members, environments, and
goals (see Figure 18), whereby Model A1 is an exemplary model for library swarm member, Model E1 is an
exemplary model for library environment and so on. In addition, sub-libraries will be possible. In the
following sections, we define a generic library of CPS models. Then we provide a concrete example based on
the EmergencyExit example, which serves as a prototype for the CPSwarm workbench (see Section 5).

Each model in the library (swarm member, environment, and goal) has the following mandatory parts:

1) Unique name:
• each model needs to be distinguishable from other models by name;
• each model’s name needs to be given in a way that is associated with the model’s

functionality.
2) Description:

• a detailed description is necessary for i) documentation and ii) the programming tasks by the
software developer;

• the description is created as parameter of the model with Property: string [256] (see point 3
Parameters for further details).

3) Parameters:
• each model contains a set of parameters that have the following form:

o Property: name, type [range]: Defines a constant parameter of the model;
o Input: name, type [range]: Defines an input parameter to the model;
o Output: name, type [range]: Defines an output parameter of the model.

Figure 18. Structure of the Intial Library of CPS Models

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 17 of 33

4.1.1 Swarm member

Description of the library: The swarm member library describes an individual CPS used in swarm applications.
Following sub-libraries are available:

1. local memory
2. behaviour
3. physical aspects
4. security (optional)
5. human interaction (optional)

All sub-libraries include several models. Local memory, behaviour and physical aspects need to be modelled
mandatory. Depending on the application, also security and human interaction can be modelled. The
application also defines the level of detail in which the chosen models are described.

The final swarm is modelled using multiple swarm members.

Structure of the library: All five sub-libraries (local memory, behaviour, physical aspects, security, and human
interaction) have several associated models. The modeller can use these models to model an individual
swarm member. Each of those models contains the property string for a textual description of the model. The
modeller is able to change the a-priori defined input/output/property parameter of each model. Moreover,
the modeller is able to add parameters to each model.

The swarm member’s local memory expresses one (or more) local states of the swarm member. An example
is the x/y position of a swarm member or the status of its locally available resources, like memory, energy,
and so on. A local status is necessary for, e.g., further calculations in other models.

The swarm member behaviour describes the behaviour of the swarm member in the environment. The
behaviour usually refers to collecting data from local sensors, performing calculations or sending data to the
actuators. The behaviour is designed in two different levels:
High-level representation
The high-level representation shows the entire behaviour in one single model.
Low-level representation
In the low-level representation, the modeller has the possibility to customize the behaviour of a swarm
member by assembling mini-behaviours taken out of a sub-library.

The physical aspects of swarm member describe its sensors and actuators that are required for functional
operation. All sensors are defined with an output, and all actuators with an input parameter, each of a certain
type within a certain range.

Optional security aspects in the modelling library include fault detection for physical aspects, a selection of
contingency plans as part of the swarm member’s behaviour and modelling remote control as a way for a
human operator to take control of single swarm member or the whole swarm in case of emergency.

Human interaction models describe ways of humans interacting with the swarm of CPS. There are different
roles for humans (see Section 6). Each role is modelled as an actor with a certain role description.

4.1.2 Environment

Description of the library: The environment library describes the environment in which the swarm of CPSs is
acting. Several models express an environment, whereby the following ones are indispensable (further ones
can be added if necessary):

• 2D/3D Map of the environment

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 18 of 33

o occupancy grid map, i.e. free space and obstacles
o expressed as a bitmap file

• Size of the environment
o width and height
o expressed in number of grid cells

• Resolution
o expressed in number of grid cells per meter

Structure of the library: Three mandatory models describe the environment: map, size and resolution. Each of
those models contains the property string for a textual description of the parameter as well as a property to
define the associated values. Other parameters can be added to an environment model as necessary.

4.1.3 Goal

Description of the library: The goal library describes the goal that the swarm of CPSs wants to reach. The goal
is expressed by a fitness value and a calculation specification. The calculation is done by incorporating
parameters from other models. If the application asks for it, multiple fitness values can be modelled, possibly
related to each other.

Structure of the library: The goal is described by a fixed model: fitness. The model contains the property
string for a textual description of the model. Further, it gives an output as a single float value as result of the
calculation.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 19 of 33

5 Use Case of the Initial Catalog of CPS Models - the EmergencyExit Example

The EmergencyExit example is used as use case for the initial library of CPS models. It was defined in two
steps: First, the main ideas were collected in a joint brainstorming session between LAKE and UNI-KLU.
Second, the results were send to SOFTEAM to get feedback on the feasibility, especially in Modelio. The
results were presented to the consortium and discussed jointly. The CPSwarm initial library on the
EmergencyExit is stored on the Modelio Forge at https://forge.modelio.org/projects/cpswarm-
modelio36/files as shown in Figure 19. Installation instructions for the modules to run the example are
included in D5.2 Deliverable due at M9.

Description EmergencyExit example
In the EmergencyExit example, multiple swarm members move in a 2D, discrete environment and try to find
one of two emergency exits. In each discrete time step, a swarm member senses the neighbouring cells and
moves to a free cell. When a swarm member reaches an emergency exit, it is removed from the environment.
The goal is that all swarm members exit the environment.

The swarm member, the environment and the goal are modelled in the following subsections. The swarm
member is modelled as an individual and then as a swarm member with the swarm modelling structure as
represented in Figure 20.

Figure 20. Swarm Architecture

5.1 Swarm member

Description of the library: The swarm member in the EmergencyExit example is a ground rover. Each rover
has a local state (sub-library local memory). Further, each rover needs sensors and actuators (sub-library
physical aspects) and a behaviour (sub-library behaviour).

Structure of the library: The swarm member needs a local state to express its current x/y position, two sensors
and one actuator. All models are defined with an output or input parameter, respectively, of a certain type
within a certain range. Furthermore, the swarm member needs a behaviour. The behaviour is modelled as
high-level behaviour by using a single model describing the emergency behaviour as in Figure 21.

Figure 19. CPSwarm Initial Library on the Modelio Forge

https://forge.modelio.org/projects/cpswarm-modelio36/files
https://forge.modelio.org/projects/cpswarm-modelio36/files

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 20 of 33

Figure 21. Model to represent a swarm member

Models of the library:

• “localState”
o Description:” The local state describes the current x/y position of the swarm member”
o Property name: “localState.x”, type: int
o Property name: “localState.y”, type: int

• “ps: POI Sensor”

o Description:” The POI sensor returns a vector, describing the path to the next point of
interest (POI)”

o Output: Path, type: int[2]

• “rs: Range Sensor”
o Description:” The range sensor returns the map around the swarm member.”
o Output: NearField, type: int [8]

• “loc: Locomotion”

o Description:” The locomotion actuator is a motor that moves the swarm member to a given x/y
coordinate.””

o Input: Position, type: int [2]

• “exb: EmergencyExit behavior”
o Description:” In the EmergencyExit example, multiple swarm members move in a 2D, discrete

environment and try to find one of two emergency exits. In each discrete time step, a swarm
member senses the neighbouring cells and moves to a free cell. When a swarm member
reaches an emergency exit, it is removed from the environment. The goal is that all swarm
member exits the environment.”

o Input1: Path, type: int [2]
o Input2: NearField, type: int [8]
o Output: Position, type: float [2]

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 21 of 33

5.2 Environment

Description of the library: The library describes the environment where the swarm of CPSs is moving in (2D
map, size, and resolution). A list of points of interest is added.

 Structure of the library: The environment of the EmergencyExit example needs to be specified. This includes
an image of the map, the resolution and the size of the map. Furthermore, we have a list of two points of
interest (the location of the emergency exits), described as x/y coordinates on the map.
All models have a property to express a textual description.

Models of the library:

• “map: String”
o Description:” The map defines a file path to the bitmap file of the environment.”
o Property: path, type: string “C:\temp\CPSwarm\environment\EmergencyExit.png”

• “res: Resolution2D”

o Description:” The resolution defines the resolution of the map (number of grid cells per
meter).”

o Property: x, type: int
o Property: y, type: int

• “size: Size2D”

o Description: «The size defines the size of the map (total number of grid cells in height and
width).”

o Property: x, type: int
o Property: y, type: int

• “poi: Position2D”

o Description: «The POI defines two points of interest (POI) in the map with their x/y
coordinates.”

o Property: poi.x., type: int
o Property: poi.y., type: int
o

Figure 22. Model to represent the environment

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 22 of 33

5.3 Goal

Description of the library: The goal of the swarm of CPSs is to find the two points of interest - the emergency
exits.
Achieving this goal is expressed by the fitness value, computed with:

−�(𝑃𝑃𝑃. 𝑥 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝑥)2 + (𝑃𝑃𝑃.𝑦 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝑦)2

Structure of the library: The structure of the goal in the EmergencyExit example is rather simple. A single
model, the fitness, expresses it. It gives an output as a single float value.

Models of the library:

• “Fitness”
o Description:” The fitness value is computed with

−�(𝑃𝑃𝑃. 𝑥 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿. 𝑥)2 + (𝑃𝑃𝑃.𝑦 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿.𝑦)2 “
o Input: poi, type: int []
o Input: localState.localx, type: int
o Input: localState.localy, type: int

Figure 23 shows a model to represent a fitness function.

Figure 23. Model to represent a fitness function

5.4 Future Work

The security models will be elaborated in the updated versions of this deliverable. In addition, further work
on threat and attack models will be included as part of the modelling library to have applicable contingency
plans assigned to each of the threats and attacks addressed.

In the current implementation, the behaviour is modelled from a high-level point of view. This means that the
entire behaviour is represented in a single model (Figure 21). Future work will be to model on a low-level.
Therefore, we would like to use so-called mini behaviours that allow the modeller to customize the
behaviour. Examples for mini behaviours of the emergency exit example could be following ones (visualized
in Figure 24):

• “rsd: call read sensor data”
o Description: string ”This behaviour reads the sensor data from A2: POI Sensor and A3: Range

Sensor.”
o Input1: Path, type: int [2]
o Input2: NearField, type: int [8]

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 23 of 33

• “sc: call select cell”
o Description: string “This behaviour uses the ANN and the data from A5 to select the next

grid cell, the agent should move on.”
• “m: call Move”

o Description: string “This behaviour advises A4: Locomotion to move to a certain cell by
providing x/y coordinates.”

o Output: Pos, type: float [2]

Figure 24.Customized behavior out of mini behaviors on the EmergencyExit example

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 24 of 33

6 Initial Communication among the Models

The sections above described the modelling of a single swarm member as well as the swarm problem
definition. However, for a group of CPS to function as a consolidated swarm, communication between
members is also necessary. Information such as a swarm member’s current position, current speed or current
reading of obstacle sensors could be useful to other members and it should be shared among the swarm.

This section is meant to give a first example of the modelling of a single swarm member; more details will be
included in D5.1 Modeling Language deliverable due at M12.

The communication between a single swarm member and other swarm members is bi-directional. On one
hand, a swarm member may need other swarm members’ information to carry out its swarm algorithm. On
the other hand, it also outputs necessary information to others. A swarm member may have access to many
information, such as its current position, its current speed, etc., which are modelled as local memory of the
swarm member (see previous section). However, not all this information is needed for communication.
Therefore, one responsibility of a swarm modeller is to model the swarm members so that they expose the
correct information to each other. For example, in map exploring swarm algorithm, the positions of detected
obstacles are valuable, while in other cases, such information may be irrelevant.

We provide the possibility to model swarm communication in the modelling tool. For this purpose, a
methodology was developed based on conventional class diagram with our own custom extension and
interpretation. We use a special class Communication Interface to model the exposed variables of a type of
swarm members. Exposed variables are modelled as public attributes in a subclass of the Communication
Interface. By associating this subclass with a swarm member class, it indicates which type of swarm members
is going to expose the specified variables. By using the “use” relation in class diagram, it indicates which
members are going to use these variables.

Figure 25 shows an example of modelling the communication between rovers and drones in a swarm. The
classes Rover Communication Interface and Drone Communication Interface are extension of class
Communication Interface and they are used to describe the exposed information of rovers and drones
respectively.

In this example, rovers have access to three pieces of information: their own current position (pos), current
speed (speed) and the reading of the laser sensor (laser_sensor). Drones have access to their current position
(pos), current height (height) and current speed (speed).

On one hand, two variables from rovers (speed and laser_sensor) are chosen to be exposed to other
members. This information will be used not only by drones, but also by other rovers, to carry out their swarm
algorithm, just as indicated by the two dashed line arrows. On the other hand, two variables from drones (pos
and height) are also exposed and they will be utilized by rovers.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 25 of 33

Figure 25. Example diagram for swarm communication modelling

By using this method, swarm modellers/designers have an intuitive and yet highly flexible tool to model
communication among the swarm. If a type of swarm member need to exposed different variables to
different kinds of swarm members, the user just simply needs to build a separate Communication Interface
for each group of swarm members (see Figure 26, Rover is providing different interfaces to Drone and Rover
2). Besides, this method could also be applied to configure what variables to monitor in the monitoring tool
by simply connecting the Monitoring Tool class to interesting different interfaces (see Figure 26).

Figure 26. Extended example diagram for swarm communication modelling

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 26 of 33

Figure 28. Three roles with their individual tasks in the CPS design process [29]

7 Human-in-the-Loop

7.1 Roles of Humans in the Design of CPS Swarms in the CPSwarm Workbench

This section outlines human roles in the CPSwarm workbench. The main structure of roles and actors is
adapted from D2.1- Initial vision scenarios and use case
definition (see Figure 27) and the publication of Schranz et.
al in [29] (see Figure 28).

The summarized roles of the approaches from D2.1 and
[29], lead to following construction, that will be used as an
initial concept to model the human in the CPSwarm
workbench: This concept comes with four roles namely the
modeller, the software developer, the engineer and the
operator, which abstracts several sub-roles from D2.1 (see
Figure 28).The customer is skipped in this consideration, as
it plays a minor role in working with the CPSwarm
workbench. Each role has pre-defined tasks that are further
explained in the following subsections.

CPSwarm workbench roles – modeller, software developer,
engineer, and operator – are modelled as actors (see Figure
28). Feedback loops between roles are always possible and
desirable. Security issues like identifying malicious sensory
data, malicious swarm agents, swarm behaviour in case of
malicious swarm member, security breach potentials and
contingency plans will be considered in the deliverables
D4.7 and D4.8 that are related to security threat and attack
models.

7.1.1 Modeller

The modeller is responsible for analysing and modelling a problem definition and all its associated

parameters with a computer modelling tool. She/he has a rapid perception for complex problems and a basic
understanding of programming.

The tasks of a modeller comprise:

Figure 27. Communication flow between
stakeholders (D2.1)

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 27 of 33

• Define a problem
• Formulate an overall approach to solve the problem
• Provide description and model of the libraries swarm member, the environment, and the goal (see

Section 4)
• Define and model swarm structure and behaviour
• Formulate fitness function

Modelling swarm members, environment, and goal already includes the awareness of the modeller to the
physical available resources (type, quality, capabilities, limitations, and security issues of the CPS).
Furthermore, the modeller has basic knowledge about swarms in order to be able to specify a swarm
structure and behaviour.

7.1.2 Software Developer

The software developer implements functionalities of the models provided by the modeller. Therefore,
she/he writes code in a high-level programming language. Her/his characteristic is an analytic and structured
operation.
The tasks of a software developer comprise:

• Implement functionalities as modelled by the modeller
• Create new models (out of the implemented functionalities) for the CPSwarm library
• Implement the fitness function (if not yet done by the modeller)

7.1.3 Engineer

The engineer has the task of deploying the final algorithms on hardware. She/he understands specific and
detailed hardware characteristics as well as the deployment tool chain to bring code to hardware. Her/his
characteristic is a structured working ability.
The tasks of an engineer comprise:

• Make use of the deployment tool chain in order to put the code onto the target systems
• Adjust parameters for deployment, including possible setup of communication channels (defining

addresses and network names), calibrating sensors and testing the target system.

7.1.4 Operator

The operator is responsible for operating the swarm as deployed by the engineer. She/he is responsible for
successfully controlling the swarm, managing communication and interactions between humans and the
swarm, and retrieving information from the swarm. She/he interprets the data acquired by the swarm to
make decisions and manipulate the swarm.
The tasks of an operator comprise:

• Monitor the swarm in real time
• Acquire, interrupt and analyse data about the swarm
• Interacting with the swarm by setting initial mission goals and adjusting the swarm behaviour during

operation
• Assessing the status of the swarm and observing the environment based on information from the

swarm members.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 28 of 33

7.2 Future Work on Human-Swarm Interaction

In future work on human-swarm interaction models in the CPSwarm modelling library we will first focus on
the perspective of the operator (see Section 6.1). The operator interacts with the swarm of CPS through a
communication interface as in Figure 29 to

• get outputs from the swarm via state estimation and visualization
• send inputs to the swarm via control methods.

Interacting with a swarm is related communication to a single entity (the entire swarm) rather than to
multiple individual robots. Topics we are going to deal with cover following points of interactions with a
swarm:

• Monitoring
• Controlling

o Setting mission goals
o Adjusting behaviour
o Interrupt behaviour

• Analysing data
o Assess information provided by the swarm
o Observing the environment based on the information provided by the swarm.

Moreover, the CPSwarm workbench is going to offer a library with further instructions and guidelines to
specify a swarm’s behaviour regarding human encounter. This relation becomes a topic in every vision
scenario as defined in D2.1 for safe, smooth and effective collaboration between humans and swarms
whereas this project regards a swarm in a supporting role for the human. The guidelines should cover safety
aspects and task-related activities that need to be considered when implementing a swarm mission.
Furthermore, at the current state of concept development, WP2 and WP4 envision an extensible set of
“behavioural parameters” that adjust characteristics of a swarm’s behaviour. These aspects could be, e.g.,
defensive behavioural vs. demanding (like guiding and insisting on certain reactions of human in a certain
context. Another example could be the configuration of the degree of autonomous behaviour vs. step-wise
human control. This way of interaction depends on the mission to fulfil and the involvement of humans
within a setting; a swarm assisting in certain tasks should preferably wait for commands and react efficiently.

Figure 29. Human-Swarm Interaction Model (adapted from [9])

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 29 of 33

On the other hand, in search and rescue missions, swarm members should organize themselves and search
the environment in an efficient and effective way.
Further parameters need to be found and ranges need to be set in the future as well as mutual influences of
parameter values.
The current idea is that parameters are given and adjusted by the modeller in the swarm model. The
adjustment is performed on a pre-defined scale of float numbers between 0 and 1 that enables the modeller
to decide the amount of influence in the final human-swarm interacting procedure. These parameters
include, e.g., cognitive complexity, interaction, autonomy, environmental influence, and safety.

More details on the main ideas are part of the internal work-in-progress paper. Further details together with
the implementation will be part in D4.2 – Updated CPS modelling library (M21) after updating requirements
and further detailing the scenarios derived within WP2.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 30 of 33

8 Conclusions

The deliverable D4.1 – Initial CPS modelling library provides a good overview on existing models in CPS
design. Furthermore, it states the initial communication among the models. The most important part for the
future work of the CPS modelling library is given in Section 4 with the initial catalogue for CPS models.
Therein, formalizations, definitions and implementations were done for the three main model libraries: swarm
members, environment and goal. The implementation focuses on the Emergency Exit example that offered a
quite good understanding of final modelling issues in modelling swarms of CPS.
Finally, Section 7 gives a first idea for human-swarm interaction. The future concept for human-swarm
interaction as part of the CPSwarm modelling library was already mentioned in Section 7.2.
In the current state of concept derivation, the swarm operator is focused to control the swarm and its
behaviour. Future ideas extend this thought to specifying parameters regarding a swarm’s behavioural
characteristics when operating besides humans as assistive technology (cf. SWARM Logistics Assistant
Scenario in D2.1), search and rescues technology (cf. Swarm Drones Scenario D2.1). Eventually, humans just
need safe and unobtrusive swarms like in car convoy where safety, effectiveness and efficiency are the main
goals for which an optimal problem solving strategy is needed (cf. Automotive CPS in D2.1). More details
about the concept itself and its implementation will be addressed by the upcoming D4.2 – Updated CPS
modelling library, scheduled for M21.

The initial catalogue for CPS models in Section 4 and the corresponding use case implementation in Section
5 are of main interest to deliverable D4.4 due M10. Therein, the initial swarm intelligence algorithm library
will be created strictly keeping on these definitions and formalizations in this deliverable. The models for
these algorithms will follow the same concept as the models for the behaviour described in Sub-Section
4.1.1: first, a high-level view is considered, where a model defines a swarm algorithm. Second, the swarm
algorithms will be divided into mini-behaviours. This allows the modeller to customize the behaviour to
create its own swarm algorithm.

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 31 of 33

Acronyms

Acronym Explanation

DoA Description of Action
DSE Design Space Exploration
KPI Key Performance Indicators
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
MBSE Model-based systems engineering
POI Points of interest
CPS Cyber-Physical Systems
UAV Unmanned Aerial Vehicles

List of figures
Figure 1. INTO-CPS Project ToolChain .. 6
Figure 2. LineFollowRobot architecture diagram ... 7
Figure 3. LineFollowRobot First Connection Diagram .. 7
Figure 4. LineFollowRobot Second Connection Diagram ... 8
Figure 5. Single Tank Example Architecture Diagram .. 8
Figure 6. Single Tank Example Connection Diagram .. 9
Figure 7. Three Tank Example Architecture Diagram ... 9
Figure 8. Three Tanks Example Connection Diagram ... 9
Figure 9. FMEA flowchart [15] .. 10
Figure 10. Fault Tree Analysis on a vehicle headlamp [16] .. 11
Figure 11. A temperature controller with two sensors [14] ... 11
Figure 12. Physical exposure vulnerability [14] ... 12
Figure 13. AND and OR example [17] ... 12
Figure 14. Obtain user data attack tree from the COSSIM project [17] .. 12
Figure 15. Ways of compromising the cooler [14] ... 13
Figure 16. The OGC Sensor Things model .. 14
Figure 17. OGC Modelling Example ... 15
Figure 18. Structure of the Intial Library of CPS Models ... 16
Figure 19. CPSwarm Initial Library on the Modelio Forge .. 19
Figure 20. Swarm Architecture ... 19
Figure 21. Model to represent a swarm member ... 20
Figure 22. Model to represent the environment .. 21
Figure 23. Model to represent a fitness function ... 22
Figure 24.Customized behavior out of mini behaviors on the EmergencyExit example ... 23
Figure 25. Example diagram for swarm communication modelling .. 25
Figure 26. Extended example diagram for swarm communication modelling .. 25
Figure 27. Communication flow between stakeholders (D2.1) ... 26
Figure 28. Three roles with their individual tasks in the CPS design process [29] ... 26
Figure 29. Human-Swarm Interaction Model (adapted from [9]).. 28

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 32 of 33

9 References

[1] FMI Standard. FMI 2.0. 2016. Available at: https://www.fmi-standard.org/

[2] 20-Sim. 2016. Available at: http://www.20sim.com/

[3] Softeam. Modelio Open-Source Modeling Environment. 2016. Available at: http://www.modelio.org/.

[4] The project deliverables are available at: http://into-cps.au.dk/publications/

[5] INTO-CPS GitHub page, the project examples are available at: https://github.com/into-cps

[6] Object Management Group (OMG). System modeling language specification v1.5. 2017. Available:
http://www.omg.org/spec/SysML/1.5/

[7] System Modelling with Modelio http://into-cps.github.io/systemmodelling/

[8] INTO-CPS Project in project in Modelio.org forge http://forge.modelio.org/projects/intocps

[9] A. Kolling, P. Walker, N. Chakraborty, K. Sycara and M. Lewis, "Human Interaction With Robot Swarms: A
Survey," in IEEE Transactions on Human-Machine Systems, vol. 46, no. 1, pp. 9-26, Feb. 2016.

[10] E. Haas, M. Fields, S. Hill, and C. Stachowiak, “Extremee scalability: Designing interfaces and algorithms
for soldier-robotic swarm interaction,” DTIC Document, Tech. Rep., 2009.

[11] Seyed Behzad Tabibian, Michael Lewis, Christian Lebiere, Nilanjan Chakraborty, Katia Sycara, Stefano
Bennati, Meeko Oishi, “Towards a Cognitively-Based Analytic Model of Human Control of Swarms”, in Proc. AAAAI
Spring Symp. Series, 2014.

[12] Sasanka Nagavalli, Shih-Yi Chien, Michael Lewis, Nilanjan Chakraborty, and Katia Sycara. 2015. Bounds of
Neglect Benevolence in Input Timing for Human Interaction with Robotic Swarms. In Proceedings of the
Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction(HRI '15). ACM, New York,
NY, USA, 197-204. DOI=http://dx.doi.org/10.1145/2696454.2696470

[13] Lewis, M., Wang, J., & Scerri, P. (2006). Teamwork coordination for realistically complex multi robot
systems. In NATO Symposium on Human Factors of Uninhabited Military Vehicles as Force
Multipliers (pp. 1-12)

[14] Security Modeling Tools https://insights.sei.cmu.edu/sei_blog/2016/10/security-modeling-tools.html

[15] Security Application of Failure Mode and Effect Analysis, Christoph Schmittner et al.

[16] An Introduction to Fault Tree Analysis, Dr. Jane Marshall

[17] The COSSIM H2020 project http://www.cossim.org

[18] A set of modeling tools for security analysis (attack tree, attack impact) and a code generator to produce
code for the seL4 platform from AADL models https://github.com/cmu-sei/AASPE

[19] Wan, Jiang, Arquimedes Canedo, and Mohammad Abdullah Al Faruque. "Security-aware functional
modeling of cyber-physical systems." Emerging Technologies & Factory Automation (ETFA), 2015 IEEE
20th Conference on. IEEE, 2015.

[20] The Almanac project, http://www.almanac-project.eu

https://www.fmi-standard.org/
http://www.20sim.com/
http://into-cps.au.dk/publications/
https://github.com/into-cps
http://into-cps.github.io/systemmodelling/
https://insights.sei.cmu.edu/sei_blog/2016/10/security-modeling-tools.html
http://www.cossim.org/
https://github.com/cmu-sei/AASPE
http://www.almanac-project.eu/

Deliverable nr.
Deliverable Title

Version

D4.1
Initial CPS modeling library
1.0 - 06/10/2017

Page 33 of 33

[21] The FOODIE project, http://www.foodie-project.eu/
[22] Amazon AWS IoT, https://aws.amazon.com/
[23] ITU-T-Y.2060, Overview of the Internet of Things, 2012.
[24] Trilles Oliver, Sergi, et al. "SEnviro: A Sensorized Platform Proposal Using Open Hardware and Open

Standards." (2015).
[25] LinkSmart.net – IoTWorldServices, http://www.iotworldservices.com/
[26] Introduction to the Architectural Reference Model for the Internet of Things, http://iotforum.org/wp-

content/uploads/2014/09/120613-IoT-A-ARM-Book-Introduction-v7.pdf

[27] J. Nagi, A. Giusti, L. M. Gambardella and G. A. Di Caro, "Human-swarm interaction using spatial
gestures," 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, 2014,
pp. 3834-3841.

[28] B. Gromov, L. M. Gambardella and G. A. Di Caro, "Wearable multi-modal interface for human multi-robot
interaction," 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR),
Lausanne, 2016, pp. 240-245.

[29] INTO-CPS Project http://projects.au.dk/into-cps/

[30] M. Schranz, W. Elmenreich and M. Rappaport, „Designing Cyber-Physical Systems with Evolutionary
Algorithms”, book chapter, Springer, to appear in 2018.

[31] http://www.opengeospatial.org/standards/sensorthings
[32] Alessandra Bagnato, Regina Krisztina Bíró, Dario Bonino, Claudio Pastrone, Wilfried Elmenreich, René

Reiners, Melanie Schranz, Edin Arnautovic: Designing Swarms of Cyber-Physical Systems: the H2020
CPSwarm Project: Invited Paper. Conf. Computing Frontiers 2017: 305-312

http://www.foodie-project.eu/
https://aws.amazon.com/
http://www.iotworldservices.com/
http://www.opengeospatial.org/standards/sensorthings

	Document History
	Table of Contents
	1 Executive summary
	2 Introduction
	2.1 Scope
	2.2 Document organization
	2.3 Related documents

	3 Background State-of-the-Art of the CPSwarm Initial modelling library
	3.1 Embedded and CPS modeling
	3.1.1 LineFollowRobot Example
	3.1.1.1 First LineFollowRobot example

	3.1.2 Single Tank Example
	3.1.3 Three Tank Example

	3.2 Security and safety modeling

	1
	2
	3
	3.1
	3.2
	3.3 IoT Entity Modeling

	4 Initial Libraries for CPS Models
	4.1 CPSWarm Libraries
	4.1.1 Swarm member
	4.1.2 Environment
	4.1.3 Goal

	5 Use Case of the Initial Catalog of CPS Models - the EmergencyExit Example
	5.1 Swarm member
	5.2 Environment
	5.3 Goal

	5.4 Future Work
	6 Initial Communication among the Models
	7 Human-in-the-Loop
	7.1 Roles of Humans in the Design of CPS Swarms in the CPSwarm Workbench
	7.1.1 Modeller
	7.1.2 Software Developer
	7.1.3 Engineer
	7.1.4 Operator

	7.2 Future Work on Human-Swarm Interaction

	8 Conclusions
	Acronyms
	List of figures
	9 References

