
    
 

 

 
This project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 731946. 

 

 
 

 
 
 

 
 

D4.4 – INITIAL SWARM MODELING LIBRARY  
 
 
 
 

Deliverable ID  D4.4 

Deliverable Title  Initial swarm modeling library 

Work Package  WP4 – Models and algorithms for CPS Swarms 
   

Dissemination Level  PUBLIC 
   

Version  1.0 

Date  24/10/2017 

Status  Final 
   

Lead Editor  Melanie Schranz (LAKE) 

Main Contributors  Etienne Brosse (SOFTEAM), Alessandra Bagnato (SOFTEAM), 
Wilfried Elmenreich (UNI-KLU)  

 
 

Published by the CPSwarm Consortium 
  

Ref. Ares(2017)5343783 - 01/11/2017



 

Deliverable nr. 
Deliverable Title 

Version 

D4.4 
Initial swarm modeling library 
1.0- 24/10/2017 

Page 2 of 28 

 

Document History 

Version Date Author(s) Description 

0.1 2017-06-12 Melanie Schranz 
(LAKE) First draft 

0.2 2017-06-25 Melanie Schranz 
(LAKE) Filled input to TOC 

0.3 2017-10-03 Melanie Schranz 
(LAKE) Integrate feedback from UNI-KLU 

0.4 2017-10-05 Melanie Schranz 
(LAKE) Minor revisions focusing the topic 

0.5 2017-10-12 Melanie Schranz 
(LAKE) Integrate models from SOFTEAM 

0.6 2017-10-16 Etienne Brosse 
(SOFTEAM) Feedback from SOFTEAM 

0.7 2017-10-16 Melanie Schranz 
(LAKE) Finalize deliverable for internal review 

1.0 2017-10-24 Melanie Schranz 
(LAKE) 

Integrate minor improvements from TTECH and finalize the 
document 

 
 

Internal Review History 

Review Date Reviewer Summary of Comments 

2017-10-23 Edin Arnautovic (TTTech) Accepted with minor comments 

2017-10-23 Omar Morando (DGSKY) Accepted with minor comments 
 
 
  



 

Deliverable nr. 
Deliverable Title 

Version 

D4.4 
Initial swarm modeling library 
1.0- 24/10/2017 

Page 3 of 28 

 

1 Executive summary 

This deliverable, namely “D4.4 Initial swarm modeling library”, is a deliverable of the CPSwarm project, funded 
by the European Comission’s Directorate-General for Research and Innovation (DG RTD), under its Horizon 
2020 Research and innovation program (H2020), reporting the results of the activities carried out by WP4 – 
Models and algorithms for CPS Swarms. The main objective of the CPSwarm project is to develop a 
workbench that aims to fully design, develop, validate and deploy engineered swarm solutions. More 
specifically, the project focuses on modeling of swarms of CPSs, implementing and optimizing the 
corresponding swarm intelligence algorithms, driven by WP4.  
 
Deliverable D4.4 is a software deliverable and represents a summary of the research work on swarm 
modeling and swarm intelligence algorithms achieved from M5 to M10 in WP4. Thus, the outcome of the 
research work on both topics should be seen as an initial step to structure the corresponding models and 
algorithms utilizing the CPSwarm vision in terms of provided pseudo codes and approaches for the 
implementation. The models and the algorithms are expected to be extended in their scope.  
 
The most important outcome is the following: In literature, there is no possibility to model swarm algorithms 
with a common modelling approach for swarm intelligence. Thus, we aim at creating a common swarm 
modeling approach out of existing swarm modeling concepts. Beside swarm models, also swarm intelligence 
algorithms are considered.  
 
Furthermore, this deliverable formulates the foundation for a concrete implementation and a proposal for a 
common swarm modelling approach for “D4.5 – Updated Swarm Modelling Library”. 
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2 Introduction 

D4.4 – “Initial swarm modeling library” is a public document defining publicly available swarm models and 
swarm algorithms found till M10 in the CPSwarm project. 
 
LAKE, as deliverable leader, initially drafted the document, which has subsequently been enriched with 
content, especially from LAKE, SOFTEAM and UNI-KLU.  
 

2.1 Scope 

This deliverable mainly reports on the outcome of task T4.3, in which we will develop models for swarm 
behavior. This is the first deliverable in a series of three (D4.4, D4.5, and D4.6), which addresses this topic. 
Therefore, first of all, D4.4 provides an analysis of the state-of-the-art swarm models and swarm intelligence 
algorithms. For this purpose, research publications in form of journals, conference papers, technical reports, 
books, and book chapters are consulted. Especially the swarm intelligence algorithms have been processed 
to be directly implemented to the library of swarm intelligence algorithms. Furthermore, we suggest a 
common technique to model these algorithms in two ways: standard (as they are) and customizable. 
Especially the latter represents a big challenge and need in the swarm modelling community, as often real-
world problems cannot be solved by solely applying a specific predefined algorithm.  
The presented swarm algorithms refer to CPS2CPS interaction. Another big point are recipes for 
Human2Swarm interaction. This topic will be the focus of D4.5.  
 

2.2 Document organization 

The remainder of this deliverable is organized as follows:  
Section 3 describes the motivation for extracting swarm intelligence algorithms from nature and applying 
them to complex (systems of) cyber-physical systems. Section 4 presents the process how swarm intelligence 
models are extracted from nature and gives examples on selected swarm intelligence models. Section 5 
provides an overview on swarm intelligence algorithms. Section 6 draws an initial approach for a common 
modelling approach for swarm intelligence algorithms. Finally, Section 7 concludes the deliverable and 
provides an outline on future topics. 
 

2.3 Related documents 

 
ID Title Reference Version Date 

D3.1 Initial System Architecture Analysis & Design 
Specification D3.1 1.0 31/06/2017 

D4.1 Initial CPS Modeling Library D4.1 1.0 31/09/2017 

D5.2 Initial CPSwarm Modelling Tool D5.2 1.0 31/09/2017 
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3 Motivation: Swarm Intelligence in Nature 

It is a typical trend in today’s technologies: computers are embedded in everyday objects, networked, and 
equipped with multiple sensors to link the real world with the virtual one – such entities are called cyber-
physical systems (CPS). Examples for the applications of CPSs are of different disciplines, collectively referred 
to IoT, smart mobility, smart grids, or smart houses. CPSs can be described as strongly interconnected 
hardware and software components. The usage of CPSs and systems of CPS comes with many challenges, 
including increased dynamics, connectivity, and complexity calling for features like adaptability, scalability, 
robustness, self- configuration, self-healing, etc. As a system, they are even more complex, hard to control 
and program. In the project CPSwarm we focus on swarms of CPSs, e.g., swarms of drones, or of ground 
rovers, and heterogeneous ones. 
 
To handle the complex characteristics of swarms of CPSs, natural systems are taken into consideration that 
have evolved over millennia to master NP-hard problems (Green, Aleti, & Garcia, 2017). These range from 
cellular automata over neural networks to swarm intelligence. CPSs can be considered as a different kind of 
organism: they follow specific behavior that can adapt to changes in the environment including (Hamann & 
Schmickl, 2012): 

• Pursuing a specific goal  
• Aggregating or dispersing in the environment 
• Communicating 

o direct 
o indirect 

• Memorizing 
o states (local, environmental, etc.) 
o morphologies (e.g., size, weight, sensors) 

 
Thus, we can summarize following typical properties characterizing a swarm: 

• Individuals with basic capabilities following simple rules 
• No central control 

o Decentralized and hence robust 
• Emergent 

o Performs complex functions 
• Self-organizing 

 
including following main advantages:  

• Adaptability 
• Robustness 
• Scalability. 

 
Moreover, swarm intelligence is not a subfield of artificial intelligence. In (Hamann & Schmickl, 2012) they 
argue that this is not possible, as “methods of swarm intelligence are not based on sophisticated and complex 
engineered reasoning architectures. Instead, swarm intelligence exploits the emergent properties of self-
organizing interaction networks operated by computationally inexpensive, reactive and individually often non-
cognitive masses of agents. In swarm intelligence, cognition arises, if at all, only on the collective level, thus 
potentially giving us a new approach to understand our own human cognition.” 
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4 Swarm Intelligence Models 

In literature, swarm intelligence models are described as the process of adopting models found in nature in 
swarm behavior of, e.g., insects, bacteria, or fish (Chee Peng & Dehuri, 2009). Swarm intelligence models are 
computational models to undertake distributed (optimization) problems in a swarm of, e.g., CPSs. The state-
of-the art process follows the steps described in Fig. 1. Nature inspired and still inspires engineers to design 
similar systems and apply similar algorithms to solve complex real world problems in different domains. 

A closer look is taken on the actions, and an analysis of observations enables the creation of a model. The 
simulation gives then an assessment of how well the intended result can be achieved with a given behavior. 
This assessment is usually given through a fitness value. Finally, the algorithm is extracted to design a nature 
or bio-inspired swarm intelligence algorithm. 
 
In all swarm intelligence models, the swarm is made of individual, simple agents. Through direct or indirect 
communication, they cooperate without a central control. Only through their interactions a collective 
behavior emerges, which can solve complex tasks. In summary, swarm intelligence models have following 
characteristics: 

• Emergent behavior arises from simple interactions among individuals in a swarm 
• Individuals act according to simple and local behavior 
• Organized behavior emerges automatically 
• There is no central control. 

 
Five basic principles set the basis for swarm intelligence models (Chee Peng & Dehuri, 2009): 

1) Proximity: ability to perform simple computation of time and space, respond to environmental 
stimuli 

2) Quality: react to quality (fitness) factors 
3) Diverse Response: distribute tasks 
4) Stability: maintain the group behavior in case of environmental changes 
5) Adaptability: change the group behavior in case of environmental changes 

 

Fig. 1 Process of designing a swarm intelligence model and the corresponding algorithm 
(adapted from (Ahmed & Glasgow, 2012)). 
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In summary, each bio-inspired swarm intelligence model stands on its own. There is no common 
methodology to model swarm algorithms. Therefore, a future step for the CPSwarm project is to define a 
common approach with a common modeling language for modeling swarm intelligence. 
 
Selected swarm intelligence models, extracted from nature, are presented in the following subsections. They 
were selected upon two points: i) frequency they are used and thus, their relevance in research, and ii) 
difference in their methodology.  
 

4.1 Ant Colony 

Ants are social insects. They live together in colonies of 2 to 25 million. When the ants perform foraging, they 
show a typical swarm behaviour. Initially, each ant performs a random search. To find the shortest path to 
food source from nest, they communicate via laying scent chemicals – so called pheromones – and following 
them from other ants. Thus, when ants find a food source, they mark the trail from food to the nest. Other 
ants follow this pheromone trail from nest to food source. Each ant proceeds following the trail, finding food, 
and again marking the path to the food with pheromones, enhancing the concentration of the pheromones. 
Finally, the ants follow the pheromone trail with the highest concentration with higher probability, while they 
are reinforcing the trail with their own pheromone. Thus, the most favourite paths emerge, whereby these are 
often the shortest of more efficient ones (Yang, Nature-Inspired Metaheuristic Algorithms, 2008).  
 
Main characteristics: 

• Distributed intelligence 
• Positive Feedback: If an ant follows a pheromone trail, it reinforces the trail – this is called positive 

feedback: the more ants follow a trail, the higher is the pheromone concentration. 
• Stigmergy: A typical characteristic for ants is their indirect communication via the local environment. 

This process is called stigmergy: a medium is used (the pheromone trails, e.g., on the forest ground). 
This implies a global data structure. 

 
The main concept of the algorithm can be visualized with following Fig. 2. The ants need to move from nest 
(N) to food (F) (see (a)). In the given example, two paths are available – a short one (path 1) and a longer one 
(path 2). First, they start to move on both paths randomly. The probability for choosing path 1 or 2 is equal 

Fig. 2 Concept of ants finding the shortest route (Chrysostomou, Gasteratos, 
Nalpantidis, & Sirakoulis, 2012). 
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with 50% (see (b)). As the ants on path 1 (with point C) come earlier back to their nest, the pheromone 
concentration is much higher than on path 2. Thus path 1 is subsequently increasing its concentration and 
thus, its probability. Finally (see (c)), the majority of ants will follow the shorter path 1, as this has a higher 
probability.  
 
More specific example: Army Ant 
The army ants perform their foraging in regular routes with an angle of 123°. If they are not able to find food, 
they build bivouacs to start with the next 123° on the next day. The amazing behaviour lies in the usage of 
123°. Using an even number like 360°/3=120° would lead to a repeated foraging on the fourth day. By using 
123°, 10° are left from the first day (see Fig. 3). 

 

4.2 Bee Colony 

Honeybees are social insects living in colonies of up to 10.000 individuals. They forage food in form of nectar, 
produce honey and store it in their colony. When honeybees perform foraging, they show a typical swarm 
behaviour. They use two types of communication: pheromones and “waggle dances”. If they are going to be 
attacked by enemies, they release pheromones to stimulate other bees for attacks. If they are finding a good 
food source, e.g., a flower patch and bring the nectar back to the colony, they animate other bees with 

Fig. 3 Army ants perform a 20-day stationary phase, in which 
they switch between 14 foraging raids each 123° apart from the 
last one. The heavy line indicates the colony’s path to the new 

bivouac, where they repeat the 123° separated foraging process. 

Fig. 4 Foraging of honeybees (Ghayour, Abdellahi, & Bahmanpour, 2015) 
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waggle dances. With the dance performance they communicate the distance with the number of dance runs, 
and the direction with the angle of runs. The procedure of the waggle dance is illustrated in Fig. 4. In general, 
we differ between three sorts of bees: employed bees, onlooker, and scouts. Scouts are searching for new 
food sources in a random way. They return to the hive and evaluate different patches depending on, e.g., 
sugar content. They deposit the nectar and go to the dance area to perform the “waggle dance” (as 
employed bees). Onlooker bees make a decision and follow the request. However, the waggle dances differ 
between types of bees (Yang, Nature-Inspired Metaheuristic Algorithms, 2008).  
 
Another type of collective behaviour can be observed in honeybees’ aggregation. They form clusters on 
different occasions, e.g., 

• In winter to conserve body temperature (see Fig. 5) 
• To protect the queen 
• When searching new nesting sites 
• To stay on the warm side (preferred behaviour of young bees preferring temperature of 36°C) 

 
Main characteristics: 

• In foraging: broadcasting ability 
• In aggregation: no direct and no indirect communication 
 

4.3 Fireflies 

Fireflies are a family of insects of 2,000 different species. The most of these species produce flashing lights – 
short and rhythmic. Furthermore, the pattern of these flashes is typically unique to a species. The flashing 
light (green, yellow, or red with wavelengths from 510 to 670 nanometers) is realized by decomposing a 
complex carboxylic acid (luciferin) through the associated enzyme luciferase. it is The process of self-light 
generation is called bioluminescence. Flashing lights have two functions: 

• to attract mating partners or  
• to attract potential prey (Yang, Nature-Inspired Metaheuristic Algorithms, 2008).  

In the attraction of mating partners, females respond to a male’s signalling. In some species, females mimic 
the mating flashing patterns of other species and eat the male fireflies (Yang, 2009).  

Fig. 5 Example of bee clusters: clustering 
behavior in winter  (Shaun, 2016) 
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Another usage of flashing is to inform predators about the bitter taste of fireflies. Tropical species are even 
able to synchronize their flashes. The rhythmic flash is characterized by the rate of flashing.  

 
In more detail, each male firefly acts as pulse-coupled oscillator (PCO) (see Fig. 7). The oscillator has an 
internal activation state, Φ(t) that increases constantly over time. Whenever the oscillator state reaches a 
certain threshold, a pulse is emitted (in the case of Fireflies a brief flash of light) that is observed by the 
neighbouring agents.  
 
An agent that receives a pulse adjusts its state. In case of an excitatory coupling, the adjustment is always 
zero or positive. Other models include inhibitory coupling (Klinglmayr, Bettstetter, & Timme, Globally stable 
synchronization by inhibitory pulse coupling, 2009), where adjustments can be negative or combined 
excitatory and inhibitory coupling (Klinglmayr, Bettstetter, Timme, & Kirst, 2017). Over time, a connected 
ensemble of agents synchronizes their phases to each other in order to converge to a synchronous blinking 
ensemble (Klinglmayr, Bettstetter, Timme, & Kirst, 2017). 
 

Main characteristics: 
• Limited communication distance: The intensity of light decreases as distance r increases. 

Furthermore, air absorbs light too. This supports the decreased light intensity. The limit distance for 
communication is several hundred meters at night.  

 

Fig. 6 Swarm of fireflies (©Tsuneaki Hiramatsu) 

Fig. 7 Pulse-coupled oscillator (PCO) 
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4.4 Particle Swarm  

The particle swarm optimization algorithm (PSO) was developed by Kennedy and Eberhart in 1995 (Eberhart 
& Kennedy, 1995). It has no natural model behind, although it has its inspiration in swarm behaviour of fish 
and birds. Nevertheless, it is much simpler as “real” bio-inspired algorithms or even genetic algorithms as, 
e.g., it does not use mutation, crossover, or pheromones. PSO is based on two main approaches: 

• Real-number randomness 
• Global communication among the 

particles belonging to the swarm 
The goal is to find the best location among 
the local best locations among all particles (or 
agents)  

• within a certain amount of iterations, 
or  

• if the objective is reached.  
The main idea is that all particles search the space for an objective by adjusting their trajectories in a quasi-
stochastic manner. The movement is a combination between a stochastic and a deterministic component. 
Furthermore, each particle is attracted by both the global best g* and its own best location 𝒙𝑖∗ in history. 
Nevertheless, it still has the tendency to move in a random way. Thus, a particle updates its local best 
location everytime it finds a better one.  
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5 Swarm Intelligence Algorithms 

The following sub-sections present selected swarm intelligence algorithms based upon the selected swarm 
models of the previous section. 
 

5.1 AntHocNet 

The AntHocNet algorithm (Di Caro, Ducatelle, & Gambardella, 2004) is designed for routing data packets in a 
distributed way in mobile ad hoc networks. Although this algorithm doesn’t directly use CPSs, it can be used 
in providing a stable communication among the CPSs. Communication is of high importance in CPS2CPS.  
AntHocNet is chosen, as with mobile agents the topology changes constantly and even paths can become 
inefficient or infeasible. Thus, routing tables need to be updated more frequently. The procedure sets up a 
path from source s to destination d through a number of nodes i (see Fig. 8, falsely described as graph: in 
wireless ad hoc networks there are typically no edges. In this figure it simulates the connection.). Each node 
on the graph selects the next hop for incoming ants (=data packets) based on the local available routing 
table 𝒯𝑖  (for more information see below).  

The algorithm uses forward and backward ants (for each type several variants exist, nevertheless, we are 
going to simplify the main procedure to one forward and one backward ant). As the forward ant reaches the 
destination, it creates a backward ant, hands over the list of visited notes and terminates itself. The backward 
ant goes the same way as the forward ant, but in reverse direction so to finally reach the source node. It 
leaves its pheromones on each node in terms of time it takes to move one hop. This influences the 
probability at the node to choose a route for the next incoming forward ant.  
As the nodes in a mobile ad hoc network move, the relationships between nodes change. Thus, path 
maintenance and path improvement are important issues.  
 
Advantages of the algorithm: 

• Adaptive to network changes 
• Robust to ant and node failures 
• Provides multi-path routing. 

 
Issues in using the model of ants in swarms of CPS: 

- The ant as CPS: 
In the AntHocNet, the ant is not the CPS, but a packet sent through the network.  

Fig. 8 AntHocNet: a graph to find a route from source to destination. 
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• Initializing the routing table: 
The initialization is done via broadcast: if a destination node d is targeted for the first time, the 
network is flooded (the packets sent out are called reactive forward ants in the paper (Di Caro, 
Ducatelle, & Gambardella, 2004)). Reaching destination d, this ant is converted to a backward ant.   

• Probability of choosing a route: 

𝑃𝑛𝑛 =
(𝒯𝑛𝑛𝑖 )𝛽1

∑ (𝒯𝑛𝑛𝑖 )𝛽1𝑗∈𝒩𝑑
𝑖

,𝛽1 ≥ 1 

where 𝒯𝑖  is the table on node i and, thus, 𝒯𝑛𝑛𝑖  one entry representing the “goodness” of the link 
between the next neighboring node n and the destination d. Furthermore, 𝒩𝑛

𝑖 represents the total 
number of neighboring nodes the goodness value (or pheromone) 𝒯𝑛𝑛𝑖  is stored for. 𝛽1 is an 
additional control parameter.  
 

• Dropping pheromones: 
When the backward ant moves through the network it computes the time it takes for one hop 𝜏𝑛𝑥 
(from the last neighbor to node x). For this computation it includes the accumulation of all those 
computations to get the value for moving from d to the current node x with 𝒯�𝑛𝑥 , the number of hops 
ℎ between x and d, and the time it takes to move one hop 𝒯ℎ𝑜𝑜. 

𝜏𝑛𝑥 = (
𝒯�𝑛𝑥 + ℎ𝒯ℎ𝑜𝑜

2
)−1 

The value 𝒯𝑛𝑛𝑥  is then updated for the next forward ant with 
𝒯𝑛𝑛𝑥 = 𝛾𝒯𝑛𝑛𝑥 + (1 − 𝛾)𝜏𝑛𝑥, 𝛾 ∈ [0,1] 

• Path maintenance and improvement: 
In regular intervals the nodes broadcast “hello messages”. If no “hello messages” are received, e.g., 
by node a, node b removes the pheromone information from its routing table. If a “hello message” is 
received, e.g., by node a from node c that was not part of the routing table yet, it is added.  
To improve paths by using “hello messages”, a node a adapts the routing tables by inspecting the 
received contents 𝒯𝑥𝑛𝑥  from node x, adds costs for sending a packet from a to x, and creates an 
estimate ℬ𝑥𝑛𝑎  for sending a packet from a to x.  

• Exploration vs. exploitation: 
Already explored routes are assigned with a specific probability. Thus, all ants choose between the 
available routes – they exploit already found routes. Several routes – maybe also shorter or more 
efficient ones – remain unnoticed. This behavior converges to local optima. Therefore, the ants 
should choose randomly, with a given probability, etc. to choose between exploitation and further 
exploration.  

 
Requirements for CPS: 

• Need a stigmergy – a medium for dropping pheromones, e.g. 
o a digital map (as the presented routing tables) 
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Pseudocode 

 
//AntHocNet– Pseudocode 1 
 2 
 3 
//Find routes through forward and backward ants 4 
Generate forward ant x_i; //this ant is always generated as soon as the path to d is unknown 5 
Select destination node d; 6 
 7 
while (x_i not at d) 8 
    //Initialize links 9 

if (𝒯𝑛𝑛𝑖 ==0)  10 
    Flood the network with x_i;  //this is always performed as soon as the path to d is 11 
unknown 12 
else  13 
    for loop over all nodes N  14 

    Select new neighbor node n with probability 𝑃𝑛𝑛 = (𝒯𝑛𝑑
𝑖 )𝛽1

∑ (𝒯𝑛𝑑
𝑖 )𝛽1𝑗∈𝒩𝑑

𝑖
 15 

    end for 16 
end if 17 

end while 18 
 19 
Generate backward ant y_i; 20 
Terminate forward ant x_i; 21 
while (y_i not at s) 22 
    for loop over all nodes N  23 

    Drop pheromones 𝜏𝑛𝑥 = (𝒯
�𝑑
𝑥+ℎ𝒯ℎ𝑜𝑜

2
)−1 24 

    Update routing table 𝒯𝑖  25 
    end for 26 
end while 27 
 28 
//Link maintenance and improvement 29 
//n… neighbours, stored or new, from which a “hello message” was received 30 
//m… neighbours, stored in the routing table, where no “hello message” is received 31 
if (timer expires) 32 

for loop over all nodes N 33 
    Broadcast “hello message”; 34 
    Receive “hello message”s and store these neigbors n; 35 
    for loop over all neighbors n 36 

if (n in 𝒯𝑖) 37 
    Update 𝒯𝑛𝑛𝑥  38 
else if (n not in 𝒯𝑖) 39 
    Add n with 𝒯𝑛𝑛𝑥  40 
end if 41 
for loop over all neighbors m 42 

if (m not equal to n) 43 
        Delete m from 𝒯𝑖 44 

end if 45 
end for 46 

end for 47 
end for 48 

end if 49 
 
Commonly known variants to the standard algorithm: 

• Elitist Ant System (EAS) – solves route allocation problems 
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• Max-Min Ant System (MMAS) – solves scheduling problems in software projects 
• Rank-based Ant System (RAS) – solves scheduling problems in thermal generator maintenance 
• Continuous Orthogonal Ant Colony (COAC) – solves continuous optimization problems 
• Recursive Ant Colony (RAC) – estimates parameters of a function 

 
Applications 
The applications differ, whether the algorithm runs on a central server or distributed on all nodes in the 
graph (as done in AntHocNet). In the centralized approach, the problem to solve can be observed in god 
view. In the distributed approach, the problem has several unknowns, e.g., the total number of nodes in the 
graph or the weights of the links that are known to direct neighbors solely.  
Typical problems for ant algorithms comprise: 

• Travelling salesman problem 
• Protein structure (sequence of amino acids) prediction 
• Problems to find the needle in a haystack. 

 

5.2 Honeybee Algorithm 

The bee algorithm is an optimization algorithm inspired by the foraging behaviour of honeybees, where they 
use waggle dances to attract other bees. 
 
Issues in using the model of ants in swarms of CPS (Yang, Nature-Inspired Metaheuristic Algorithms, 
2008): 

• Strength of the waggle dance: 
An observer bee follows the dancing bee on a probability, determined with the strength of the 
waggle dance 𝑤𝑖(𝑗) of bee i at time step t=j 

𝑝𝑖 =
𝑤𝑖
𝑗

∑ 𝑤𝑖
𝑗𝑛𝑓

𝑖=1

 

where 𝑛𝑓is the number of bees in the foraging process. The total number of bees is N, the number of 
observer bees is N-𝑛𝑓.  

• Different roles of bees: 
The natural algorithm describes different types of bee roles: scout, employed bee, onlooker. In 
typical applications these roles can be mapped onto one agent. Thus, whenever a processing step is 
finished, the agent just switches its role and performs the tasks related to the new role. 

• Fitness value: 
Additionally to direction and angle, the agents need to communicate a fitness value. This fitness 
value should describe the quality of the “food source” found. Such a fitness value could help other 
agents to follow the waggle dance request or not.  

 
Requirements for CPS: 

• Local broadcast technology 
• Local memory 
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Pseudocode
 1 
//Bee Algorithm - Pseudocode 2 
_______________________________________ 3 
Initialize parameters: scout agents n, sites m, size of patches (incl. site, neighborhood, 4 
stopping criterion) 5 
while (stopping criterion not met) 6 
    Select sites for neighbourhood search 7 
    Recruit agents for selected sites (more agents for best sites)  8 
    Evaluate fitnesses 9 
    Select the fittest agent from the patch 10 
    Assign remaining agents to search randomly and evaluate their fitnesses 11 
end while12 
 
Commonly known variants to the standard algorithm: 

• Enhanced Bee Algorithm (EBA) 
• Grouped Bee Algorithm (GBA) 
• Hybrid Modified Bee Algorithm (MBA) 

 
Applications 

• Function Optimization 
• Electronic Design 
• Training NN classifiers like MLP, LVQ, RBF and SNNs 

 

5.3 BEECLUST 

This type of bee algorithm is inspired by the aggregation capabilities of bees: young honey bees form 
clusters on warm places (Thomas Schmickl, 2011). If they meet other bees, they stop with a certain 
probability. Their waiting time depends on the local temperature. The colder the local location is, the shorter 
is the waiting time and the other way around.  
After this waiting time, the bee moves on with a random walk.  
 
Advantages for CPS: 

• No direct communication among CPSs  
• No indirect communication between CPS and infrastructure (stigmergy) 
• No memory 

 
Issues in using the model of ants in swarms of CPS 

• No communication 
This algorithm works without communication (direct or indirect). The agents are somehow selfish and 
not interested in the other agent’s meaning.   

• Calculation of the waiting time 
An exemplary calculation of the waiting time is given in (Thomas Schmickl, 2011) with 

𝑤(𝑟) =
𝑤𝑚𝑎𝑥  𝑟2

𝑟2 + 7000
 

where their robots measure luminance expressed with r.  𝑤𝑚𝑎𝑥 is the maximal waiting time and 7000 
is a tuning parameter that needs to be adapted related to the environment the swarm operates in. 
The tuning parameter can be also modelled as auto-tuning as described in (Kernbach, et al., 2012). 
w_0 indicates the waiting time if a bee hits a wall.  

 
Requirements for CPS: 
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- Sensor detecting warm places (however “warm places” are specified, e.g., a 
light/temperature/pressure gradient) 
 

Pseudocode 
 

//BEECLUST – Pseudocode 1 
 2 
Initialize parameters: bees b, waiting times, stopping criterion 3 
while (stopping criterion not met criteria)  4 
    move randomly 5 
    if b hits a wall 6 
       stop with waiting time w_0 7 
    end if 8 
    if b meets b_j 9 

stop with waiting time 𝑤(𝑟) 10 

𝑤(𝑟) = 𝑤𝑚𝑚𝑥 𝑟2

𝑟2+7000
  11 

     end if 12 
end while 13 
 
Applications 
Everywhere, where you have CPS that  

• are hard (or even unable) to control 
• are able to produce measurements, seldom or inaccurate 
• don’t know their position (no GPS, no positioning/localization system available) 
• don’t have memory 
• don’t have a communication ability 

Examples are passive agents like intelligent buoys, fish trap, tank and pipe systems. 
 

5.4 Firefly Algorithm 

The firefly algorithm is a multimodal optimization algorithm inspired by the light flashing of fireflies (Yang, 
2009). The main idea is to attract other fireflies for aggregation. 
 
Issues in using the model of fireflies in swarms of CPS  

• Same type (gender): 
It is assumed that each CPS is of the same type. Biologically speaking, there are all unisex. Thus, each 
firefly is attracted by others independent of their type.  

• Attractiveness: 
The value for attractiveness β is proportional to their brightness I. For example, if two fireflies i and j 
flash, the less bright flashing one will move to the brighter flashing one. Furthermore, both values 
decrease if distance r between them increases. In the simplest form, the light intensity is expressed 
bv inverse square law 𝐼(𝑟) ≈ 1

𝑟2
. To avoid singularity with r=0, and a fixed light absorption coefficient 

γ, it can be approximated with the Gaussian form 
𝐼(𝑟) = 𝐼0𝑒−𝛾𝑟

2 
where 𝐼0 is the light intensity at r=0. The absorption coefficient γ typically varies from 0.1 to 10 
starting with the characteristic length 

𝛾 =
1
Г𝑚

, Г𝑚 = 𝛾−1/𝑚 → 1,𝑚 → ∞. 

As the attractiveness β is proportional to the light intensity, we can define it with 
𝛽(𝑟) = 𝛽0𝑒−𝛾𝑟

2 . 
Furthermore, we define the distance 𝑟𝑖𝑗 between firefly i and firefly j with the Euclidean distance 

𝑟𝑖𝑗 = �𝒙𝑖 − 𝒙𝑗� = �(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2. 



 

Deliverable nr. 
Deliverable Title 

Version 

D4.44 
Initial swarm modeling library 
0.1- 24/10/2017 

Page 19 of 28 

 

A random walk biased towards the brighter fireflies could have following form 
 

𝒙𝒊 = 𝒙𝒊 + 𝜷𝟎𝒆−𝜸𝒓
𝟐�𝒙𝒋 − 𝒙𝒊� + 𝜶𝝐𝒊 1 

 
where 𝝐𝑖 is a random vector uniformly distributed in [0,1] and 𝛼 ∈ [0,1] is the randomization 
parameter. 
 

Requirements for CPS: 
• Sensing capabilities for light 

 
Pseudocode
//Firefly Algorithm – Pseudocode 1 
 2 
Generate initial population of fireflies x_i (i=1,2,…,n) 3 
Light intensity i_i at x_i is determined by f(x_i) 4 
Define light absorption coefficient γ 5 
while (t<MaxGeneration) 6 
for i=1:n all n fireflies 7 
    for j=1:n all n fireflies 8 
        if(I_i<I_j) 9 

Move firefly I towards j by applying equation 1; 10 
end if 11 

        Vary attractiveness with distance r via exp[-γr] 12 
       Evaluate new solutions and update light intensity 13 
    end for 14 
end for 15 
Rank the fireflies and find the current global best g* 16 
end while17 
 
Commonly known variants to the standard algorithm: 

• Discrete firefly algorithm (Durkota, 2011) 
• Binary firefly algorithm (Falcon, Almeida, & Nayak, 2011) 
• Chaotic firefly algorithm (Zhang & Wu, 2012) 
• Parallel firefly algorithm (Subotic, Tuba, & Stanarevic, 2012) 
• Lèvy flight firefly algorithm (Yang, 2010) 
• Gaussian firefly algorithm (Farahani, Abshouri, Nasiri, & Meybodi, 2011) 

 
Applications 
Typical fields for firefly algorithms comprise making and supporting decisions in the field of engineering, 
computer science and communication including 

• Cluster head selection 
• UCAV path planning 
• Job scheduling 

 

5.5 Particle Swarm Optimization (PSO) 

In the particle swarm optimization (PSO) we would like to find the best solution with n particles, whereby all 
of them perform quasi-random walks in a stochastic manner by positional vectors.  
 
Issues in using the model of PSO swarms of CPS 

• Velocity of particles: 
The velocity of particles 𝒗𝑖 for particle i is determined with 
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𝒗𝑖𝑡+1 = 𝒗𝑖𝑡 + 𝛼𝝐1⨀[𝒈∗ − 𝒙𝑖𝑡] + 𝛽𝝐2⨀[𝒙𝑖∗ − 𝒙𝑖𝑡] 
where 𝝐1 and 𝝐2 are random vectors, whereby each entry is a value in [0,1]. Furthermore, α and β are 
the acceleration constants and both typically have a value of 2. A typical starting value for the 
velocity at t=0 is 𝒗𝑖0 = 0. The velocity could be anything, nevertheless, the value is typically bounded 
by a range [0,𝒗𝑚𝑎𝑥]. 

 
Pseudocode
//Particle Swarm Optimization Algorithm – Pseudocode 1 
 2 
Objective function f(x), x=(x_1,…,x_p)^T 3 
Initialize locations x_i and velocity v_i of n particles 4 
Find g* from min{f(x_1,…,f(x_n)} (at t=0) 5 
while (criterion) 6 
    t=t+1 (pseudo time or iteration counter) 7 

for i=1:n all n particles and all d dimensions 8 
         generate new velocity v_i^t+1 9 
        calculate new locations x_i^t+1=x_i^t+v_i^t+1 10 
        evaluate objective functions at new locations x_i^t+1 11 
        find the current best for each particle x_i* 12 
     end for 13 
    find the current global best g* 14 
end while 15 
 
Commonly known variants to the standard algorithm: 
On overview of all PSO variants can be found in (Imran, Hashim, & Khalid, 2013). In general, researchers 
adjust the algorithm in terms of introducing constriction factors, inertia weights or differ in the initialization 
of particles.  
 
 
Applications 

• Applications for PSO have a wide range, mainly including multimodal problems, or problems for 
which no specialized methods are available (Poli, 2008). These include, e.g., Antenna design 

• Design and optimization of communication networks 
• Clustering, classification, and data mining 
• Combinatorial optimization problems 
• Design of controller 
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6 Initial Approach: Common Modelling for Swarm Intelligence Algorithms 

As we have seen in Section 4: There is no common methodology to model swarm algorithms. The modelling 
of swarm algorithms extracts behavior of the nature and abstracts it to the technical domain (for the entire 
procedure see Fig. 1). Nevertheless, there is no standard modelling methodology, technique or language to 
visualize these models. Moreover, it is hard to combine different swarm behaviors from different sources.  
This challenge is picked up by the project CPSwarm in WP4: We introduce a common modelling standard for 
swarm behavior. The main idea is to have a formulation and definition of models visually representing in 
SysML i) swarm intelligence algorithms (Section 6.2) and ii) individual behavior of existing swarm intelligence 
algorithms to model new ones (Section o). In both cases, the final goal is to deposit code to those models 
and model pieces to speed up the development and reusability process.  
The developed swarm models are stored on the Modelio Forge available at the following web link 
https://forge.modelio.org/projects/cpswarm-modelio36/files.   
Installation instructions for the modules to run the example are included in D5.2. 
 
First, the process of modelling swarm intelligence algorithms is formalized in Section 6.1.  
 

6.1 Formalization of models for swarm intelligence algorithms 

The formalization of the models is adopted from “D4.1 – Initial Catalogue of CPS” models. Therein, each 
model (swarm member, environment, and goal) has following three components: 
  
1) Unique name: 

• each model needs to be distinguishable from other models by name 
• each model’s name needs to be given in a way that it is associated with the model’s 

functionality 
  
2) Description:  

• a detailed description is necessary for i) documentation and ii) the programming tasks by the 
software developer 

• the description is created as parameter of the model with string [256] 
 

3) Parameters: 
• each model contains a set of parameters that have the following form: 

o Property: name, type [range]: Defines a constant parameter of the model 
o Input: name, type [range]: Defines an input parameter to the model 
o Output: name, type [range]: Defines an output parameter of the model 

 

6.2 Library of swarm intelligence algorithms 

This library comprises the given swarm intelligence algorithms as presented in Section 5 from a high-level 
view. In the final modelling library, they can be found ready to use, including 

• a description of their functionality 
• defined inputs and outputs 
• defined local states (if necessary) 
• deposited Java and C++ code (in a first version: pseudocode) 

 
On the example of the swarm algorithm BEECLUST (see Section 5.3 for more details) we model a swarm 
member. This includes the swarm algorithm as well as corresponding sensors and actuators. The modelling is 
visualized in Fig. 9, and following models are used: 
 
 

https://forge.modelio.org/projects/cpswarm-modelio36/files
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Models of the library: 
 

• “bc: BEECLUST” 
o Description: “The BEECLUST is used for clustering of swarm individuals applying 3 rules: 1. 

Move randomly,2. If a bee meets another bee, they stop with a certain probability. Their 
waiting time depends on the “local temperature”. The colder the local location is, the shorter 
is the waiting time and the other way around. 3. After this waiting time, the bee moves on 
with a random walk.” 

o LocalState: w_0, type: int 
o LocalState: wmax, type int 
o Input1: poi:Point2D, type: int [2] 
o Input2: luminance, type: float 
o Output: pos:Point2D, type: int[2] 
o Pseudocode:  

move randomly 
if swarm_member hits a wall 
    stop with waiting time w_0 
end if 
if swarm_member meets other swarm_member 

stop with waiting time 𝑤(𝑟) 

    𝑤(𝑟) = 𝑤𝑚𝑚𝑥 𝑟2

𝑟2+7000
  

end if 
• “ps: POISensor” 

o Description:”The POI sensor returns a vector, describing the path to the next point of interest 
(POI)” 

o Output: poi:Point2D, type: int [2] 
•  “ls: light sensor” 

o Description: “The light sensor measures the luminance” 
o Output: luminance, type: float 

•  “l: Locomotion” 
o Description: ”The locomotion motor moves the agent to a given x/y coordinate.” 
o Input: pos:Point2D, type: int [2] 
 

 
Fig. 9 Model to represent a swarm member with BEECLUST. 
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6.3 Customizable swarm intelligence algorithms 

Typically, real-world applications come with needs that cannot be directly modelled with an existing nature-
inspired swarm intelligence algorithm. Therefore, it is useful to have a process that allows constructing 
customized swarm intelligence algorithms. This is enabled by a library that provides single behaviors 
extracted out of given swarm intelligence algorithms.  
In the modelling tool, you can construct a state machine with all the behavioral elements you need (a 
selection of those elements in the library is visualized in Fig. 11). In the final version, java code will be 
deposited to each state.  
Furthermore, each behavioral element (= state in the state machine) has a number of inputs and outputs that 
allow to connect with other elements or with components of the modelled swarm member (e.g. sensors – see 
D4.1). This state machine can be summarized to a “global” model MySwarm (see Fig. 10), which can be used 
as behavior for the swarm member (as done with the BEECLUST in Fig. 9). Therein, you can define the unique 
name, the description, the number and type of inputs and outputs, and local states. An exemplary 
customized swarm algorithm is depicted in Fig. 12. This customized swarm algorithm is inspired by the 
BEECLUST. We additionally add the state “Update routing table” to the BEECLUST functionality. 
 

 

 
 

Fig. 10 Model of a customized 
swarm intelligen algorithm (high-

level view). 

… 
Fig. 11 Selection of available states in the library. 
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Fig. 12 Model of a customized swarm intelligen algorithm (low-level view). 
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7 Conclusions 

In this deliverable D4.4 we provided an overview on swarm intelligence algorithm from the state-of-the-art. 
First, we described the natural models behind them. Then we took a closer look on the algorithmic side, by 
focusing on CPS relevant topics, including requirements and issues for swarms of CPSs, and where they can 
be applied. Finally, we presented the current state of developing a common swarm modelling approach on 
two levels: high-level – where a model describes an entire swarm algorithm, and low-level – where the 
modeler is able to customize its own swarm algorithm through mini-behaviors.   
 
In future work, the swarm intelligence algorithms will be segmented to application specific properties. This 
will enable a directed application of swarm intelligence algorithms to the use cases envisioned in the 
CPSwarm project.  
Additionally, following state-of-the-art models will be processed, and documented in the next deliverable 
D4.5: 

• Synchronization of swarms of fireflies 
• Bird flocks 
• Bacteria swarms 
• Fish schools 
• Quadruped herds 
• Evolutionary Models 

Moreover, Human2Swarm recipes will be introduced. A comprehensive introduction to this topic can be 
already found in D4.1 
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Acronyms 

 
Acronym Explanation 

DoA Description of Action 

KPI Key Performance Indicators 

CPS Cyber-Physical Systems 

PSO Particle Swarm Optimization 
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