

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D7.3 - INITIAL BULK DEPLOYMENT TOOL

Deliverable ID D7.3

Deliverable Title Initial Bulk Deployment Tool

Work Package WP7 – Deployment Toolchain

Dissemination Level PUBLIC

Version 1.0

Date 2018-09-23

Status Final

Lead Editor Farshid Tavakolizadeh (FRAUNHOFER)

Main Contributors Farshid Tavakolizadeh (FRAUNHOFER), Bálint Jánvári (SLAB)

Published by the CPSwarm Consortium

Ref. Ares(2018)5657435 - 06/11/2018

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 2 of 35

Document History

Version Date Author(s) Description

0.1 2018-08-01
Farshid

Tavakolizadeh
 (FRAUNHOFER)

First Draft with TOC

0.2 2018-09-06
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Added requirements, background review, architecture and
components

0.3 2018-09-10
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Added introduction, modified background review, architecture
intro

0.4 2018-09-13 Bálint Jánvári
(SLAB) Added secure deployment considerations

0.5 2018-09-13
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Added implementation section, executive summary, conclusion,
appendices, and annex

1.0 2018-09-23
Farshid

Tavakolizadeh
 (FRAUNHOFER)

Addressed review comments.

Internal Review History

Review Date Reviewer Summary of Comments

2018-09-18 Davide Conzon
(ISMB) Accepted with minor comments

2018-09-18 Artiza Elosegui
(TTTech) Minor corrections

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 3 of 35

Executive Summary

This document is a deliverable of the CPSwarm project, funded by the European Commission’s Directorate-
General for Research and Innovation (DG RTD), under its Horizon 2020 Research and innovation program
(H2020). It reports the results of “Task 7.2 Bulk deployment tools” from M13 to M21. The consecutive results
until M33 will be reported in “D7.4 – Final bulk deployment tool”.

The document introduces deployment and related challenges by referring to the literature and CPSwarm
technical requirements. It provides an overview of the most popular deployment solutions and evaluates
their strengths and weaknesses. Furthermore, the document proposes a design aimed at providing required
features while solving shortcomings of existing systems. It then presents the current system implementation,
APIs, and communication models. Finally, the report concludes by summarizing the current state of the work
and giving an outlook of the steps planned for the following project months.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 4 of 35

Table of Contents

1 Introduction .. 5

1.1 Gathered Application Requirements .. 5
1.2 Related Documents ... 9

2 Background Work .. 10
3 Architecture .. 15

3.1 Terminology ... 15
3.2 Secure Deployment ... 16
3.3 Target Selection .. 16
3.4 Components ... 17

4 Implementation ... 20
4.1 External Interfaces .. 21
4.2 Internal Interfaces .. 23

5 Conclusion ... 25
Acronyms ... 26
List of figures .. 27
List of tables .. 27
References ... 28
Appendices ... 30

Appendix A - Sample Task Description .. 30
Appendix B - Sample Target List ... 30

Annexes .. 33
Annex A - Security Workshop - March 26-27th, Budapest... 33

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 5 of 35

1 Introduction

Software deployment is a set of activities that make a software available for use [1]. The main deployment
activities are release, installation, and activation. Release involves the steps after development cycles where a
software system is assembled and prepared for transfer. Installation comprises configuring the host and the
software to accommodate the execution. Activation is the process of executing the software after installation
and for the first time. Other deployment activities such as update and adaptation can be considered as
special forms of installation involving changes to existing software as atomic updates or adjustments
respectively.

While software deployment activities can be generalized into a predefined set of steps, the nature of the
steps vary from platform to platform. On top of that, a deployment on an arbitrary platform typically
requiring minimal efforts can get very tedious when repeated numerous times under the same settings. As
such, people involved in software deployment often rely on solutions to reduce the complexity and increase
operational efficiency. It is worth noting that connected devices are growing at a fast pace such that the
number of active devices is expected to reach 30.7 billion by 2020 and 75.4 by 2025 [2]. This rate has turned
into a global concern for software and security experts worried about the technology readiness for such a
scale. In CPSwarm Task 7.2, the consortium focuses on three main concerns within and beyond the scope of
project. First, to securely roll out software updates to resource-constrained devices at large scale. Second, to
ensure that software updates are delivered to devices with limited internet connectivity. Finally, to provide
the ability to remotely monitor the updates and the runtime in a secure and resource-friendly manner.

The consortium has identified the need for a resource-friendly deployment tool based on the literature and
over the course of numerous industrial and research projects in the past decade. While the initial analysis was
reflected in the CPSwarm project proposal, an in-depth requirement elicitation was only started during the
project and as part of WP2. The requirement elicitation has discovered numerous pain points which are faced
during daily operations by the CPSwarm application partners. These issues are gathered continuously and
formulated into technical issues. This deliverable refers to the requirements reported until M21. Section 1.1
summarizes the technical requirements that are used as the basis for design and development of the
CPSwarm Bulk Deployment Tool.

1.1 Gathered Application Requirements

The following tables summarize the result of requirement elicitation for bulk software deployment as part of
“D2.3 – Initial Requirements Reports” [RD.2] and “D2.6 - Initial Lessons Learned and Updated Requirements
Report” [RD.3].

[CRD-58] The Deployment Tool shall deploy artefacts on swarm members

Description: The generated code shall be either:
• executable on the target platform
• raw code with instructions on how to be compiled on target

Issue Links: is extended by CRD-59 The Deployment Agent shall report the... Quality Check
passed

is extended by CRD-78 The Deployment Agent shall use the li... Quality Check
passed

is extended by CRD-79 The Deployment Agent shall be respons... Quality Check
passed

is related to CRD-60 The communication between the Deploym... Quality Check
passed

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 6 of 35

is related to CRD-61 The Deployment Manager shall receive ... Quality Check
passed

Rationale: This is needed to enable mass deployment on remote devices (without physical access,
without exposed interfaces)

Fit Criterion: The artefacts can be deployed to remote devices in bulks

Priority: Minor

[CRD-59] The Deployment Agent shall report the deployment status

Description: The deployment status contains information about the state of the deployment,
reasons for failure, and possibly log messages. Deployment Agent shall offer the
possibility of reporting this information back to the Deployment Manager.

Issue Links: extends CRD-58 The Deployment Tool shall deploy arte... Quality Check
passed

is extended by CRD-60 The communication between the Deplo... Quality Check
passed

is related to CRD-61 The Deployment Manager shall receive ... Quality Check
passed

Rationale: The status of deployment is required in order to monitor and synchronise software
updates (automatically or by operators)

Fit Criterion: The status of deployment is required in order to monitor and synchronise software
updates (automatically or by operators)

Priority: Major

[CRD-60] The communication between the Deployment Agent running on swarm members and the
Deployment Manager shall be authenticated, authorized, encrypted, and integrity checked.

Description: • Data transmitted to and received from swarm needs to stay confidential.
• Only authorised entities should be able to transmit data to the swarm

members.
• The confidential data received from the swarm should not be accessed by

unauthorized entities.
• Data received from the deployment server must be validated.

Issue Links: extends CRD-59 The Deployment Agent shall report the... Quality Check
passed

is included by CRD-73 The Deployment Tool shall implement s... Quality Check
passed

is part of CRD-67 All communications between the swarm ... Quality Check
passed

is related to CRD-58 The Deployment Tool shall deploy arte... Quality Check
passed

Rationale: Secure deployments are vital for secure operation of swarms.

Fit Criterion: All security aspects including authentication, authorisation, encryption, and package

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 7 of 35

signature validation are taken into account during deployment tasks.

Priority: Major

[CRD-61] The Deployment Manager shall receive the configuration of the deployment task from the
operator prior to deployment

Description: Deployment tool requires the configuration of the deployment which is a procedure
on how (required steps) and where (target swarm members) to deploy artefacts.

Issue Links: is related to CRD-59 The Deployment Agent shall report the... Quality Check passed
is related to CRD-58 The Deployment Tool shall deploy arte... Quality Check passed

Rationale: Deployment tool requires the configuration of the deployment task to know how and
where to deploy artefacts.

Fit Criterion: Deployment Tool can be used to target specific or a group of swarm members to
deploy different types of artefacts

Priority: Major

[CRD-67] All communications between the swarm and the tools in the workbench shall be
authenticated, integrity protected and encrypted.

Description: Deployment and monitoring should only be possible after authentication and with
proper authorization. Messages in transit should be treated as confidential and must
be protected against tampering and eavesdropping.

Issue Links: contains CRD-60 The communication between the Deploym... Quality Check passed

Rationale: Updating software, setting parameters and issuing commands are sensitive operation
by their very nature.

Fit Criterion: All communications between the swarm and the tools in the workbench must use
industry standard encryption and signature schemes.

Priority: Major

[CRD-72] The Deployment Manager shall sign all packages with an operator specific key.

Description: The Deployment Agent should take upon itself the burden of managing the life-cycle
of the main binary.

Issue Links: is included by CRD-73 The Deployment Tool shall implement s... Quality Check
passed

mentions CRD-75 The Deployment Agent shall verify the... Quality Check
passed

Rationale: In order to maintain strict control over the main binary, it should only ever be started
or stopped by the Deployment Agent. Before updates, it would need to be stopped
anyways, and it makes signature validations before startups a lot simpler.

Fit Criterion: The main binary should only ever be started by the designated instance of the
Deployment Agent.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 8 of 35

Priority: Major

[CRD-103] The Deployment Tool shall provide the means to compile codes on target platforms

Description: When compilation is required, the Deployment Tool should be able to move generated
codes to target devices and compile them using provided build scripts. The build script
may setup or rely on pre-existing build dependencies on the target build environment.

Issue Links: is included by CRD-105 The Deployment Tool shall provide the... Quality Check
passed

is related to CRD-104 The Deployment Tool shall provide the... Quality Check
passed

Rationale: Native compilation is less complex when dealing with different hardware and software
architectures on robotic systems.

Fit Criterion: Deployment Tool offers the possibility of native compilation on target devices.

Priority: Minor

[CRD-104] The Deployment Tool shall provide the means to cross-compile codes for the target
platforms

Description: When compilation is required, the Deployment Tool should be able to execute build
scripts that cross-compile source codes locally, before sending and installing them on
the targets.

Issue Links: is included by CRD-105 The Deployment Tool shall provide the... Quality Check
passed

is related to CRD-103 The Deployment Tool shall provide the... Quality Check
passed

Rationale: Cross-compilation benefits from powerful host machines and saves time when
targeting similar hardware/software platforms.

Fit Criterion: Deployment Tool offers the possibility of cross-compilation for target platforms.

Priority: Major

[CRD-105] The Deployment Tool shall provide the means to compile codes

Description: When compilation is required, the Deployment Tool should be able to execute build
scripts that compile codes for/on target platforms. The tool shall support cross-
compilation (CRD-104) at first and then be extended to support native compilation
(CRD-103) on target devices.

Issue Links: includes CRD-104 The Deployment Tool shall provide the... Quality Check passed
includes CRD-103 The Deployment Tool shall provide the... Quality Check passed

Rationale: Code compilation is required when codes in compiled programming languages are
being deployed.

Fit Criterion: Deployment Tool is able to compile codes using provided build scripts

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 9 of 35

Priority: Major

1.2 Related Documents

ID Title Reference Version Date

[RD.1] Final Vision Scenarios and Use Case Definition D2.2 1.0 M16

[RD.2] Initial Requirements Report D2.3 1.0 M6

[RD.3] Initial Lessons Learned and Updated Requirements
Report D2.6 1.0 M14

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 10 of 35

2 Background Work
Previous work presents promising techniques for over the air (OTA) firmware and software update. Shavit et.
al. [3] present a firmware update system which enables over-the-air update as well as diagnostics for the
automotive industry. Skan [4] demonstrates a method for firmware update of flash memories on mobile
devices. Other works [5, 6, 7, 8, 9, 10] offer solutions to update and monitor software running on server and
cluster infrastructures. Zabbix [11] and Nagios [12] provide enterprise-class solutions for network, server,
cloud, and service monitoring. While these systems provide state-of-the-art technologies in OTA software
update and monitoring, they are not tailored for Internet of Things (IoT) systems which typically require high
level of customization and operate with limited computing resources. These existing solutions typically target
automotive industry [3], mobile devices [4], or server infrastructure [5, 6, 7, 8, 9, 10, 12, 11]. Mender [13]
specifically targets IoT devices but only offers full image updates on certain platforms.

In this document, the authors review selected OTA deployment tools which could be used to address
CPSwarm application requirements. Considering overall aim of the CPSwarm project to advance open
solutions for a wide research and industry purposes, the document only analyzes tools that are open source
and free of charge.

Mender
Mender [13] is an end-to-end open-source update system for embedded Linux devices. It enabled remote
secure full-image updates following a client-server architecture. Mender offers RESTful APIs to manage and
monitor deployments and a UI to perform basic operations related to device managements and deployment
monitoring. Figure 1 shows the architecture of Mender.

Figure 1. High-level architecture of Mender [13].

A complete deployment using Mender involves a number of stages. First, the environment must be setup
with a single Mender server and Mender clients. The clients must have a dual partition system with Mender

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 11 of 35

images or a custom-built Linux image using the Yocto Project1. Pre-built Mender images are only available
for Raspberry Pi 32 and BeagleBone Black3. Once the client devices are set and running, they authenticate
with the server and continuously poll for updates. In order to perform an image update, the user should
prepare a Mender Artifact which is a tarball archive consisting of the Linux image and meta fields describing
the name, compatibility, type, and the image hash. The Mender Artifact can then be added to the registry
using the server’s RESTful API or UI and polled by target clients. The update status can be monitored at the
server and in cases of failure, the clients would roll back to the previous version.

Mender provides a robust system to roll out updates to embedded Linux devices, however it only supports
full-image updates and requires custom images and partition layout. Moreover, the UI does not offer any
way of graphically creating or modifying the packages. It can only be used to deploy Mender Artifacts which
are created in advance.

Chef
Chef [5] is an open-source configuration management tool for server applications and utilities. A Chef system
consists of a Chef Server and Chef Clients where clients are typically powerful machines. The Chef Server
offers a CLI for all deployment activities but does not provide a graphical UI by itself. A range of graphical
features are offered by a commercial software called Chef Automate.

Figure 2. Architecture diagram of Chef [5].

Unlike Mender, software deployment with Chef is possible on most platform without any OS customization.
The setup mostly involves the installation of Chef Server on the management server and Chef Clients on
target nodes. In addition, a user requires Chef DK Workstation to interact with Chef Server for deployment
operation; see Figure 2. For deploying a software, the user should write a Cookbook which uses a Ruby
domain-specific language (DSL) comprising several components such as lists of files and recipes. The
Cookbook itself should be placed in a Policy that also defines server type, environment, and credentials. Once
a policy is submitted to the Chef Server via Chef DK, registered and authenticated Chef Clients on nodes that
match the Policy will be able to fetch the Cookbook and perform the recipes. The Chef Server collects
information about the status of deployments on all nodes.

Chef is a powerful system for deploying software on and configuring servers, cloud nodes, virtual machines,
and network devices. Even though a Chef Client can theoretically run on CPSwarm devices, it is not tailored
for environments with low resource availability. Reports [14] show that the client consumes more than 200MB
of RAM during runtime which is a large amount considering the limited memory availability of CPSwarm
target devices. Apart from that, there is a steep learning curve in using Chef from environment setup to a
deployment. This defeats the purpose of a deployment tool that is meant to make deployments easier.
Finally, the Chef Automate graphical interface is only available with a commercial license, leaving most users
only with free command line interface of Chef DK.

1 https://en.wikipedia.org/wiki/Yocto_Project
2 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
3 https://beagleboard.org/black

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 12 of 35

Ansible
Ansible [15, 7] is another open-source tool which promises automation for cloud provisioning, configuration
management, application deployment, and service orchestration. Unlike Mender and Chef, Ansible follows an
agent-less architecture which leads to minimal resource usage on target environments at idle times. Ansible
achieves that by directly communicating to target environments over SSH and actively executing instructions.
Furthermore, Ansible can benefit from Ansible Tower [8], a commercial user interface which provides
graphical configuration, deployment, and monitoring capabilities.

Figure 3. Architecture of Ansible [16].

In order to deploy software on target devices, the user should prepare an INI4 inventory file and YAML5
Playbooks. The inventory file consists of groups of devices with their hostnames or IP addresses. These
devices should have active SSH servers which are accessible by the Ansible server over the provided
addresses. The SSH authentication is possible using preconfigured password or SSH keys. Given the inventory
file and SSH access to devices, the user will be able to execute shell commands remotely on all or particular
groups of devices. Alternatively, the user can write a Playbook which orchestrates the operations that should
be executed on the groups of devices. Figure 3 illustrates the architecture of Ansible.

Ansible provides a simple and efficient toolset for configuration and deployment automation of different
hosts. However, it is not suitable for IoT systems due to a number of architectural issues. First of all, Ansible
relies heavily on SSH and benefits from its ubiquity in major operating systems. Although SSH servers may
exist on target platforms, it does not mean that they are always accessible to the Ansible server. A normal
connection through SSH requires an active networking (TCP/IP) link and access to the SSH server’s bind port
over a public IP address. This is not the case for most IoT systems deployed in the field and possibly using
cellular or limited networks. If feasible, NAT port forwarding6 may overcome this issue but adds to the
complexity. Moreover, relying on SSH means that Ansible server requires the current public IP address of
devices or a domain name that translates to the correct IP address by an external DNS. IoT devices are
volatile networking nodes and often communicate with dynamic IP addresses. Secondly, Ansible is an agent-
less system and consumes target platform resources only during a deployment activity. This saves a lot of
computing resources that would otherwise be used by an agent or client, however it leads to a lack of host
environment awareness and may negatively affect the system during deployments with the risk of exhausting

4 https://en.wikipedia.org/wiki/INI_file
5 https://en.wikipedia.org/wiki/YAML
6 https://en.wikipedia.org/wiki/Port_forwarding

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 13 of 35

primary or secondary storages. Finally, the Ansible Tower UI which is provided for graphical deployments and
monitoring is a commercial product. As a result, users who want to graphically deploy on and monitor a large
number of devices must pay a very high subscription fee.

Salt
Salt or SaltStack [9] is an open source project for configuration management, remote execution, and event-
driven provisioning. Salt provides extra flexibility by allowing both agent-based and agent-less operations.
The enterprise version of Salt offers a GUI with features for monitoring target systems [17].

Figure 4. Architecture of Salt [10].

To deploy software on multiple devices using default settings, one must setup Salt Master on the server and
Salt Minions on target devices; see Figure 4. The Minions find the Master using the default address or a
parameter given in the configuration file. Minions and Master authenticate using public-key encryption and
authentication. Each Minion needs an ID which is pre-configured or generated using device’s fully qualified
domain name (FQDN) or hostname. It also requires the public key of Master in place. When started, the
Minion creates a client key-pair and submits its public key as to the Master for authentication. These
authentication requests can be managed using a CLI interface of Master. Each Minion keeps device
information such as operating system and CPU architecture in Grains. This information is kept in Master’s
Pillar and can be used along with other labels and IPs to target devices. Salt allows execution of single
commands or States on targeted devices. A State is a YAML document with different sections describing
every required configuration on the targets. These include package dependencies, file structure, required
services, and files that should be copied from master to targets. Multiple States can be placed together in a
Top file for bulk configurations. Single commands, States, and Top files can be submitted via the CLI, a
Python SDK, or an HTTP API reporting results in a textual structured format.

Salt is a powerful system with a rather flat learning curve. It enables bulk deployments using a human-
readable YAML specification with a wide range of high-level utility functions to help perform common
operations. Similar to Chef [5] and Ansible [7], Salt is designed for remote configuration of sever

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 14 of 35

infrastructures. As a result, Salt focuses on providing server configuration capabilities without worrying so
much about runtime footprints. The agent-less version of Salt facilitates zero-resource consumption idle
times by relying on an existing SSH server. However, this does not guarantee low resource consumption
during operating times and works only when there is a possibility of opening SSH connections to targets.
With the Master-Minions version of Salt, all Minions connect to the centralized Master which publishes
notifications whenever there is an update. Compatible Minions then make independent requests to the
Master asking for the update package. This form of update distribution results in inefficient network usage
where a single package must be transferred from the server as many times as clients are. In addition, the
notification followed by concurrent request-replies may cause congestion and negatively affect the whole
network.

The CPSwarm Bulk Deployment Tool provides similar features but focuses on those that are most relevant to
IoT scenarios. It will reduce the learning curve by providing simpler interfaces that are intuitive for a wide
range of users. The communication, choice of protocols, and operations will address shortcomings of existing
systems with respect to the domain requirements.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 15 of 35

3 Architecture

The authors analyzed the CPSwarm project requirements and weaknesses of existing deployment systems to
design a software tailored to project needs. These requirements along with the project use-cases reported in
[RD.1] serve as the basis for the design and evaluation of this deployment system. With these considerations,
the authors have formulated four essential factors in design of the CPSwarm Bulk Deployment Tool:

• The proposed system should reduce the complexity of bulk, over-the-air deployment of software by
providing simple interfaces and a flat learning curve. (Simplicity)

• All components of the system, especially those that operate at the edge, shall run with minimal
footprints during both idle and operating times. (Efficiency)

• The system should offer features that are required for over-the-air bulk deployment of software on
IoT devices. (Practicality)

• The system should follow state-of-the-art practices to ensure security during all deployment
operations. (Security)

These factors take principal role in all iterations of design, implementation, and analysis until the end of the
project.

This chapter presents the initial system design by providing an overview of terminology, security
considerations, and software components. The rest of the document often refers to CPSwarm Bulk
Deployment Tool as “CPSwarm Deployment Tool” or simply the deployment tool.

3.1 Terminology

Considering simplicity as one of the key factors in the design of the CPSwarm Deployment Tool, the authors
emphasize on minimizing the introduction of new terms and instead use familiar terms in software
deployment domain. These terms are listed below:

Assembly
Compiling, structuring, signing, and other operations involved during preparation of a package for transfer.

Transfer
Transferring packages to targets. The transfer may involve operations such as compression, encryption, and
chunking.

Installation
Placing archive into the right place and preparing it for execution. This may also include installation of
dependencies.

Activation
The activity of executing a software after installation. This document uses activation and running
interchangeably.

Target
A physical device with an operating system and update capabilities. Each target is identified with a unique ID
and a set of tags (e.g. device type, group).

Task Description
A set of instructions and configurations which describe an intended deployment process. This process
includes typical deployment steps such as assembly, transfer, installation, testing, and activation. In addition,
the Task Description provides information about target devices and logging requirements.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 16 of 35

Task
Task or deployment task is an instantiation of a Task Description. The deployment tasks can be categorized
into two types depending on their effects on the underlying system: Idempotent tasks are those that make
no changes to the host beyond the scope of their task directory. Changes to the system may include
installation of dependencies, configuration of daemons, or changes to other files. On the other hand, non-
idempotent tasks are those that make permanent changes on the host. Extra care should be given to non-
idempotent tasks because they change the state of the system and affect future deployments or other
software. Such tasks should ideally include a reversion logic that is triggered when the deployed application
turns obsolete.

3.2 Secure Deployment

The CPSwarm Deployment Tool is tasked with ensuring that the software components deployed have
authorization to run on the target platform and that the operator is authorized to deploy the software. As a
secondary goal, it could also be important in certain use cases to ensure that the proprietary software
components deployed remain confidential. To achieve these goals, two basic mechanisms are used at two
different points of the develop-and-deploy process, separating the responsibility for issuing authorized
software versions and deploying these on live hardware.

After the deployable software package is built, it is signed with the private key of the developer or the
organization, protecting the integrity of the package and providing proof that the package can be deployed
on the hardware platforms specified within the package. This signature is validated by the Deployment Tool
on the device, just before the contents of the package are deployed. In order for a package to pass this
validation step, it had to be signed by a trusted developer with a valid signature (with the corresponding
public key present in the list of trusted keys), and must have in its metadata explicit permission to be
executed on the target hardware platform. Any package that does not meet these requirements will be
dropped without any of its components being deployed.

During the deployment process itself, the communication link used to transmit the software package needs
to be encrypted and authenticated. For authentication, the operator must present cryptographic proof that it
is authorized to perform the operation, which can then be used to negotiate a session-unique encryption key
that is used to transfer the package and receive responses generated during deployment.

3.3 Target Selection

The CPSwarm Deployment Tool creates an abstraction on top of the transport layer and enables device
identification using IDs and tags. As such, the users do not need to worry about IP addresses in rather
dynamic IoT settings. During a deployment, selection of few devices is simple enough using their unique IDs.
However, as the number of devices grow, a logical grouping becomes necessary to ease bulk deployments.
The deployment tool uses tags for grouping of devices. Tags can be used in two different ways:

• Set during the device configuration to identify the target based on static specifications. These include
hardware architecture, operating system, and device type. (e.g. arm, linux, drone)

• Set during the device configuration or added during the operation to identify the target based on
dynamic information. These tags include name of the location where the device operates in and
labels describing current responsibility of the device. (e.g. digisky, hanger, crewA)

The user can use these tags for perform bulk deployments without the need to know or specify the individual
device IDs. The system performs the deployment on the devices that match either the ID or tag. This
document refers to these devices as matching targets.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 17 of 35

3.4 Components

Figure 5. Conceptual diagram of the CPSwarm Deployment Tool

The CPSwarm Deployment Tool follows a client-server architecture with lightweight client component
tailored for resource constrained environments and a highly scalable server component. Both components
follow a modular design with low coupling and high cohesion; see Figure 5. This enables iterative
development and maintenance of the system in a simple and structured manner over the course of the
project and beyond it. The server-side component, called Deployment Manager, is a centralized component
with interfaces for user interaction and client communication. On the other hand, the client-side component,
called Deployment Agent, runs on every CPS with very low footprints. This section briefly introduces these
components. The next chapter provides a more technical description of the implemented components.

3.4.1 Deployment Manager

The central component of the Deployment Tool and the main point of interaction for users and command
line or graphical interfaces. Even though this is a centralized component, it is able to handle large amounts of
traffic by vertical scaling. The Deployment Manager is developed with operation concurrency in mind in such
a way that available resources are utilized efficiently during high load. Furthermore, the manager makes
intensive use of queueing mechanisms to process requests without congestion and overload. This form of
vertical scaling enables management up to hundreds of targets. The system can further scale horizontally by
instantiating multiple managers and load balancing at the API level. Technical guidelines on horizontal
scaling of the CPSwarm Deployment Tool is beyond the scope of this deliverable. The Deployment Manager
sub-components are described below:

Registry
An information point for keeping the task information and status of every target. The registry exposes APIs
which allow management of tasks, targets, and certificates. The registry keeps all tasks in a catalogue along
with meta information such as artefact size and matching targets. Targets are stored in another catalogue
including meta information about devices, task history, and status of the active task. Detailed logs about
individual stages of a deployment can also be queried via the API. Another API provides a way to interact

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 18 of 35

with Certificate manager to issue, read, and delete certificates for devices. Chapter 4 provides a deeper
description of the APIs.

Task Manager
An information processor which receives tasks from Registry and prepares them for transfer to remote
devices. The Task Manager maps tasks to targets based on target parameters. It then interacts with
Certificate Manager and Package Signer to sign packages. For package assembly, Task Manager submits
packages to a local agent which is configured for the intended compilation needs. Final results are sent to
the Transport Server.

Certificate Manager
A component that provides utility functions for certificate generation to be used by other components during
encryption, authentication, and message signing. The Registry provides an API for users to interact with the
Certificate Manager.

Package Assembler
A simplified version of the Deployment Agent, responsible for compilation of packages. Package assembler
assists in cross-compilation for other target architectures. It can run on the same hardware, a virtualized, or a
remote environment. The compiled packages are subsequently transferred to remote targets. The Package
Assembler communicates with Task Manager over network or inter-process communication channels. This
enables utilization of remote CPSs or Docker containers as isolated compilation environments.

Package Signer
A component for signing packages that are transferred and validated on target using the Package Validator.
Package signing ensures integrity of packages throughout the deployment.

Transport Server
The component enables secure, reliable, and efficient message exchange with the Transport Client over the
network. It utilizes appropriate encryption, compression, and chunking techniques depending on the
protocol and requirements. Furthermore, it applies message queuing and load balancing to manage large
amounts of traffic without overloading other components of the system. The system may offer multiple
implementations of the Transport Server based on different protocols, addressing specific use-cases. Every
implementation should provide all the required functionalities.

Log Manager
This component processes different kinds of log messages that are sent to the Deployment Manager during
target discovery as well as different deployment stages. The component processes and pipes the information
to the Registry for storage as well as query responses and status notifications.

3.4.2 Deployment Agent

The client-side component of the CPSwarm Deployment Tool that runs on every target device. The design
and implementation of the Deployment Agent place maximum focus on reducing runtime footprints. This is
to ensure that the limited resources available on CPS devices are kept available for other running application
to the greatest degree. The Deployment Agent is mostly responsible for receiving tasks from the manager,
validating and installing them, and afterwards managing their runtime lifecycle. Logging and security
considerations at every step of the deployment assist developers in discovering deployment issues and
malicious behaviour. The sub-components of the Deployment Agent are described below:

Transport Client
This component connects to a Transport Server with compatible specifications. It receives and processes
messages depending on the protocol, messaging pattern, and other requirements. This component takes

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 19 of 35

care of communication security, reliability, and efficiency similar to Transport Server but on the client side. It
also controls the incoming traffic by means of message queuing to prevent over-loading of the Task
Processor.

Task Processor
A controller in charge of high-level operations and orchestration of other components. Task Processor
receives messages from the Transport Client. Signed messages are delegated to Package Validator to ensure
their integrity. Furthermore, Task Processor evaluates tasks for compatibility with the hosting target and
feasibility of processing and installing them. The result of the evaluation is sent to Log Collector. If a task is
accepted, it will be sent to Package Installer and if needed to Package Runner. Task Processor keeps verbose
installation and runtime logs in a limited size buffers for debugging and in case requested by the
Deployment Manager.

Package Installer
The Package Installer performs all installation steps of a deployment task. This includes writing files to the
designated directories, executing provided commands, and if needed, removing previous deployment files.
Package Installer follows installation steps sequentially and aborts the installation in case of failure in a step.
A successful installation, may be followed by removal of files that are no longer needed on the target. Failed
or successful installation status information is reported to Log Collector. More verbose installation logs are
sent to Task Processor and kept in a buffer for debugging purposes.

Package Runner
Some deployment tasks include one or more runtime steps. The Package Runner executes these commands
as sub-processes and manages their lifecycle throughout the Deployment Agent runtime. A successful or
erroneous termination of the sub-processes are reported to Log Collector but verbose logs are only sent to
the Task Processor. Interrupted sub-processes are re-created when the Deployment Agent is restarted.
During the restart, Deployment Agent ensures that the package is not tampered with during the interruption.

Log Collector
The counterpart of Log Manager, collecting status and log messages from other components, serializing
them and sending the to Transport Client.

Package Validator
All packages are validated before installation and runtime. This component takes a key along with packages
or directories as input and verifies content data integrity.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 20 of 35

4 Implementation

This chapter present the implementation of CPSwarm Bulk Deployment Tool based on the initial design. The
current implementation addresses most of the functional requirements that make the tool usable in an
isolated network for in-house deployments. The security components will be implemented in the following
months and presented as part of D7.4 – Final Bulk Deployment Tool. Table 1 shows the current
implementation status of the components. Regarding the deployment stages, the system is currently stable
for transfer, installation, and activation.

Table 1. Implementation status of CPSwarm Deployment Tool as of M21.

Component Sub-component Status

Deployment Manager

Registry Beta

Task Manager Stable

Certificate Manager -

Package Assembler -

Package Signer -

Transport Server Stable

Log Manager Stable

Deployment Agent

Transport Client Stable

Task Processor Stable

Package Validator -

Package Installer Beta

Package Runner Beta

Log Collector Stable

The previous chapter explained the four key design factors (simplicity, efficiency, practicality, security) of this
deployment tool. These factors also influence the implementation of the system.

The system is developed in Go programming language, an open source compiled language with memory
safety, garbage collection, and CPS-style concurrency [18]. The features and the strong built-in libraries of Go
make it an ideal language for developing a reliable and efficient program with high parallelization and simple
code base.

The following sections describe the implementation starting from external interfaces, diving into the logic of
internal components. The overall flow of a single deployment is illustrated in Figure 6 supported here by the
description of different APIs.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 21 of 35

Figure 6. Sequence diagram of deployment on a single target.

4.1 External Interfaces

These interfaces are exposed over the network to be consumed by users and graphical interfaces. As of
writing, Targets and Tasks APIs are implemented, leaving Certificates API as future work. Eventually, all APIs
would support JSON7 and YAML8 as serialization formats. While JSON is highly portable and readable, YAML
provides better writability when configuring tasks by hand. The implemented APIs are described as follows.

Targets
A RESTful API offers endpoints to fetch the list of targets, or create, read, update, and delete individual ones.
Additionally, an endpoint allows log requests from targets. Log HTTP requests are asynchronous and return
immediately. The actual logs arrive at a later time and may be queried using the aforementioned targets
endpoints. Table 2 lists the endpoints.

7 https://en.wikipedia.org/wiki/JSON
8 https://en.wikipedia.org/wiki/YAML

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 22 of 35

Table 2. Target API endpoints.

Path HTTP Method Request Body Response Body Description

/targets GET - List<Target> Read list of targets

/targets POST Target - Create a new target

/targets/{id} GET - Target Read a target

/targets/{id} PUT Target - Update a target

/targets/{id} DELETE - - Delete a target

/targets/{id}/logs/{stage} PUT - - Request logs for a stage

The data model of targets is illustrated in Figure 7. JSON and YAML examples are provided in Appendix A -
Sample Task Description.

In addition to the RESTful API, the system exposes a notification channel based on the WebSocket9 protocol.
This channel can be used by client applications such as GUIs to get the latest state of targets as soon as this
information becomes available to the manager. The messages sent on the notification channel follow the
Target payload.

Tasks
A RESTful API provides endpoints to list all tasks as well as to create and read them. The API does not offer a
way to update or delete tasks since a submitted task immediately starts the deployment. Possible
modifications to a deployment should be submitted as a new task building on top of the previous task or
replacing it in case of idempotent deployments. The list of endpoints is given in Table 3.

Table 3. Tasks API endpoints.

Path HTTP Method Request Body Response Body Description

/tasks GET - List<Task> Read list of tasks

/tasks POST Task - Create a new task

/tasks/{id} GET - Task Read a task

The tasks data model is shown in Figure 7. A JSON example is provided in Appendix B - Sample Target List.

9 https://en.wikipedia.org/wiki/WebSocket

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 23 of 35

Figure 7. Class diagram of Deployment Manager's data model for the external interface.

4.2 Internal Interfaces

Internal interfaces are exposed over the network and are only used between the Deployment Manager and
Deployment Agent. An analysis by the consortium compared protocols such as XMPP10, MQTT11, DDS12, and
ZeroMQ13 based on a number of factors. This analysis is provided as Annex A - Security Workshop - March
26-27th, Budapest. As a result, ZeroMQ was selected for all the communications to target devices.

The deployment tool uses ZeroMQ for every communication between the manager and the agents. The
authors make intensive use of the publish-subscribe pattern enabling communication over TCP as well as
Pragmatic General Multicast (PGM). PGM provides reliable multicast mechanism over UDP, enabling efficient
use of the network for many of the manager-to-agent communications. If needed, the modular design of the
system allows addition of support for other publish-subscribe protocols such as MQTT.

The messages exchanged between manager and agents are serialized for better portability over the network.
The current version of the deployment tool uses JSON as the serialization format because of its simplicity and
human-readability during ongoing development stages. A compact JSON serialization adds negligible
processing time and message size [19]. However, the authors consider utilizing the Protobuf14 protocol to
further reduce the serialization bottleneck. This shall reduce message sizes and processing times on manager
and agents.

10 https://en.wikipedia.org/wiki/XMPP
11 https://en.wikipedia.org/wiki/MQTT
12 https://en.wikipedia.org/wiki/Data_Distribution_Service
13 https://en.wikipedia.org/wiki/ZeroMQ
14 https://en.wikipedia.org/wiki/Protocol_Buffers

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 24 of 35

Deployment Manager exposes publisher and subscriber interfaces for the following functionalities:

Advertisement and Discovery
The Targets API provides endpoints for creating and removing targets. However, manual management of
targets is not feasible in a volatile CPS environment where devices may dynamically join and leave the
network. The advertisement and discovery mechanism makes it possible for Deployment Agents to advertise
their existence and status to the manager. The advertisements are published to the manager.

Task Announcements
A task announcement is published to all matching targets as soon as a deployment task is ready for transfer.
The announcement includes the task ID and archive size. The agents running on targets receive the
announcement and assess the possibility of processing the task given its size and available system resources.
The agents send the result of the assessment to the manager. If processing the task is possible, the agents
subscribe to the task topic waiting for the actual task.

Tasks
The task includes the compressed package, installation, and runtime instructions. It is published to all
matching targets which have assessed the announcement and subscribed to the task. Once an agent receives
the task, it unsubscribes from the topic.

Acknowledgements
Small messages published to the manager for status reporting. The acknowledgement consists of the target
ID, task ID, and the status code. These messages are sent at different stages of the deployment to inform the
manager about the progress.

Logs
Logs are extended acknowledgement messages including details about an event. Events are errors from the
agent or standard output/error of executed commands. Depending on the deployment configuration, events
are published as soon as they happen or only when requested. The request for logs is sent via the manager’s
targets API.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 25 of 35

5 Conclusion

This report elaborated the initial design and implementation of CPSwarm Bulk Deployment Tool. It provided
an overview of technical requirements gathered by M21 as well as a brief analysis of most relevant work. It
then introduced four design factors for a suitable deployment tool (simplicity, efficiency, practicality, security)
addressing most of the user needs. Based on the given factors, an initial design was presented considering
strengths of existing solutions and most relevant shortcomings. The implemented parts of the design were
described from a high-level point of view. Overall, this document along with the project source code can be
used to learn about the underlying architecture of the tool to perform deployment in isolated environments.

The upcoming project months will be dedicated to the following:

• Detailed design and implementation of features that enable reliable and secure deployments. This
will cover different parts of the system ranging from deployment management authorization, to
communication, deployment, and execution.

• The ability to assemble packages at the Deployment Manager. This will add cross-compilation and
compile-once-for-all capabilities and significantly reduce the installation time.

• Design and evaluate P2P deployment strategies for highly scalable package distribution.
Decentralized package distribution may improve large-scale deployments by saving bandwidth and
reducing transfer time.

• Gather user requirements for a graphical user interface (GUI). Accordingly, develop the GUI to assist
users in deployment configuration and deployment monitoring.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 26 of 35

Acronyms

Acronym Explanation

API Application Programming Interface

CLI Command-line Interface

CPS Cyber-Physical System

DDS Data Distribution Service

DNS Domain Name Server

FQDN Fully Qualified Domain Name

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

MQTT Message Queuing Telemetry Transport

NAT Network Address Translation

NAT Network Address Translation

OTA Over-the-Air

PGM Pragmatic General Multicast

REST Representational State Transfer

SDK Software Development Kit

SSH Secure Shell

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

XMPP Extensible Messaging and Presence Protocol

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 27 of 35

List of figures

Figure 1. High-level architecture of Mender. [13] ... 10
Figure 2. Architecture diagram of Chef. .. 11
Figure 3. Architecture of Ansible. [16] .. 12
Figure 4. Architecture of Salt [10]. ... 13
Figure 5. Conceptual diagram of the CPSwarm Deployment Tool ... 17
Figure 6. Sequence diagram of deployment on a single target. ... 21
Figure 7. Class diagram of Deployment Manager's data model for the external interface. 23

List of tables

Table 1. Implementation status of CPSwarm Deployment Tool as of M21. ... 20
Table 2. Target API endpoints. .. 22
Table 3. Tasks API endpoints. .. 22

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 28 of 35

References

[1] "Software deployment," [Online]. Available: https://en.wikipedia.org/wiki/Software_deployment.
[Accessed 17 08 2018].

[2] L. Columbus, "Roundup Of Internet Of Things Forecasts And Market Estimates, 2016," 27 11 2016.
[Online]. Available: https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-
things-forecasts-and-market-estimates-2016/#4fb0eefe292d. [Accessed 31 12 2017].

[3] M. Shavit, A. Gryc and R. Miucic, "Firmware Update Over The Air (FOTA) for Automotive Industry," SAE
International, 2007.

[4] P. L. Skan, "Method for over-the-air firmware update of NAND flash memory based mobile devices".
Patent US7698698 B2, 13 4 2010.

[5] Chef Software, Inc, "Chef - Automate IT Infrastructure," [Online]. Available: https://www.chef.io/chef/.
[Accessed 31 12 2017].

[6] Puppet, "Puppet: Deliver better software, faster," [Online]. Available: https://puppet.com/. [Accessed 31
12 2017].

[7] Red Hat, Inc., "Ansible: Automation for everyone," [Online]. Available: https://www.ansible.com/.
[Accessed 16 08 2018].

[8] Red Hat, Inc., "Red Hat Ansible Tower," [Online]. Available: https://www.ansible.com/products/tower.
[Accessed 16 08 2018].

[9] "SaltStack Documentation," [Online]. Available: https://docs.saltstack.com/. [Accessed 23 08 2018].

[10] SaltStack, "A FRESH LOOK AT SALTSTACK," 06 06 2018. [Online]. Available: https://saltstack.com/a-fresh-
look-at-saltstack/. [Accessed 23 08 2018].

[11] Zabbix LLC, "Zabbux," [Online]. Available: https://www.zabbix.com/. [Accessed 31 12 2017].

[12] Nagios Enterprises, LLC, "Nagios," [Online]. Available: https://www.nagios.org/. [Accessed 31 12 2017].

[13] Mender, "Mender: Over-the-air software updates for embedded Linux," [Online]. Available:
https://mender.io/. [Accessed 03 08 2018].

[14] "Chef-client memory usage," [Online]. Available: https://discourse.chef.io/t/chef-client-memory-
usage/2319. [Accessed 16 8 2018].

[15] L. Hochstein and R. Moser, Ansible: Up and Running: Automating Configuration Management and
Deployment the Easy Way., O'Reilly Media, Inc., 2017.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 29 of 35

[16] R. Ahmed, "What Is Ansible?," 23 07 2018. [Online]. Available: https://www.edureka.co/blog/what-is-
ansible/. [Accessed 17 08 2018].

[17] W. Rowe, 01 04 2018. [Online]. Available: https://searchitoperations.techtarget.com/tip/SaltStack-
Enterprise-GUI-features-outreach-Salt-Open-territory. [Accessed 23 08 2018].

[18] "Go (programming language)," [Online]. Available:
https://en.wikipedia.org/wiki/Go_(programming_language). [Accessed 02 08 2018].

[19] K. Maeda, "Performance evaluation of object serialization libraries in XML, JSON and binary formats,"
Second International Conference on Digital Information and Communication Technology and it's
Applications (DICTAP), 16-18 5 2012.

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 30 of 35

Appendices

Appendix A - Sample Task Description

YAML
stages:
 transfer:
 - package
 install:
 - mv package/* .
 - chmod +x emergencyStop
 run:
 - python -u controller.py
 - ./emergencyStop

target:
 tags:
 - hanger

JSON
{
 "stages": {
 "transfer": [
 "package"
],
 "install": [
 "mv package/* .",
 "chmod +x emergencyStop"
],
 "run": [
 "python -u controller.py",
 "./emergencyStop"
]
 },
 "target": {
 "tags": [
 "hanger"
]
 }
}

Appendix B - Sample Target List

JSON
{
 "drone-1": {
 "Tags": [
 "drone",
 "armhf",
 "hanger"
],
 "Task": {
 "ID": "784f439c4034-baff-11e8-b802-3a41140f",
 "CurrentStage": "RUN",
 "Error": false,
 "StageLogs": {
 "Transfer": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:40:35+02:00",
 "Logs": [
 {
 "Output": "received announcement",

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 31 of 35

 "Error": false
 },
 {
 "Output": "received task",
 "Error": false
 },
 {
 "Output": "stored artifacts",
 "Error": false
 }
]
 },
 "Install": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:40:35+02:00",
 "Logs": [
 {
 "Command": "mv package/* .",
 "Output": "exit status 0",
 "Error": false,
 "LineNum": 1,
 "Time": 1536918035
 },
 {
 "Command": "chmod +x emergencyStop",
 "Output": "exit status 0",
 "Error": false,
 "LineNum": 1,
 "Time": 1536918035
 }
]
 },
 "Run": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:47:58+02:00"
 }
 }
 },
 "History": {
 "784f439c4034-baff-11e8-b802-3a41140f": "RUN-SUCCESS"
 }
 },
 "drone-2": {
 "Tags": [
 "hanger",
 "drone",
 "armhf"
],
 "Task": {
 "ID": "784f439c4034-baff-11e8-b802-3a41140f",
 "CurrentStage": "RUN",
 "Error": false,
 "StageLogs": {
 "Transfer": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:40:35+02:00",
 "Logs": [
 {
 "Output": "received announcement",
 "Error": false
 },
 {
 "Output": "received task",
 "Error": false
 },

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 32 of 35

 {
 "Output": "stored artifacts",
 "Error": false
 }
]
 },
 "Install": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:40:35+02:00",
 "Logs": [
 {
 "Command": "mv package/* .",
 "Output": "exit status 0",
 "Error": false,
 "LineNum": 1,
 "Time": 1536918035
 },
 {
 "Command": "chmod +x emergencyStop",
 "Output": "exit status 0",
 "Error": false,
 "LineNum": 1,
 "Time": 1536918035
 }
]
 },
 "Run": {
 "Status": "SUCCESS",
 "Updated": "2018-09-14T11:48:01+02:00"
 }
 }
 },
 "History": {
 "784f439c4034-baff-11e8-b802-3a41140f": "RUN-SUCCESS"
 }
 }
}

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 33 of 35

Annexes

Annex A - Security Workshop - March 26-27th, Budapest

The following is a part of the security workshop results in regards to communication protocols. This analysis
will be published as part of future deliverables.

The main goal of this workshop was to define message types (including their fields and attributes) and to try
and map these to primitives in the libraries proposed (XMPP, MQTT, DDS and ZMQ) with the end goal of
selecting a library to build our communications infrastructure upon.
Based on feedback from the partners responsible for the Deployment Tool and the Monitoring and
Configuration Tool, we have identified the basic message types required for these tools to work. Since the
basic requirements for propagating events and commands were already discussed during the previous
workshop, we could assemble a more-or-less complete list of messages required:

 Reliable Multicast Confidential Authenticated Authorized Time
sensitive

Event
an event has
occurred on one of
the swarm members
that need to be
propagated

Yes Yes Yes Yes Yes Yes

Command
the Monitoring and
Configuration Tool
has raised a remote
event on a specific
swarm member

Yes No Yes Yes Yes Yes

Artefact
the Deployment
Tool has sent a
software artefact
that needs to be
deployed on the
swarm member

Yes No Yes Yes Yes No

Status
the swarm member
has made progress
deploying the
software artefact

Yes No Yes Yes No No

Set / Get
the Monitoring and
Configuration Tool
has sent a request to
get or set the value
for a global
parameter of the

Yes No Yes Yes Yes No

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 34 of 35

behavior

Subscribe /
Unsubscribe
the Monitoring and
Configuration Tool
wants to subscribe
to or unsubscribe
from updates on a
property

Yes No Yes Yes Yes No

Telemetry
the swarm member
has sent an update
for the value of a
property to a
subscriber

No No Yes Yes No Yes

Please note that response messages which only include a confirmation that the operation has completed
successfully are not included, and that the descriptions in italic are only examples for how such a message
might be used.
On a lower level, in order to facilitate discovery and to provide a way for swarm members and workbench
tools to keep track of the current composition of the swarm, a discovery mechanism is needed. Additional
security functionality – like initial authentication and key exchanges – might also happen as part of the
discovery process. The following basic message types are required for discovery to work:

• Discover / Present – unauthenticated discovery
• Join / Welcome – authenticated discovery and join request
• Status – periodic update on presence and key parameters

While the exact implementation is left open for later discussion, it is likely that initial requests would be
multicast, while responses would then arrive as unicast messages.
 These message types can then be mapped to standard primitives found in the communication
libraries surveyed so far:

• Publish – subscribe: Subscribe, Unsubscribe, Telemetry
• Request – reply: Get, Set, Command
• Stream: Artefact, Status
• Dish – antenna: Event, Discovery

It is important to note that while these primitives are the best match for each message type, it is feasible to
implement them using a different primitive if required. Based on the requirements established so far in terms
of primitives and features, the libraries proposed were evaluated and compared:

 Centralized protocols Decentralized protocols

 XMPP MQTT DDS ZMQ

Publish – subscribe Yes Yes Yes Yes

Request – reply Yes No Yes Yes

Stream Yes Workaround Workaround Yes

Dish – antenna Yes Workaround Workaround Yes

Suitability for mesh networking Low Moderate High High

Deliverable nr.
Deliverable Title

Version

D7.3
Initial Bulk Deployment Tool
1.0 - 2018-09-23

Page 35 of 35

Resource usage High Moderate Moderate Low

Ease of use Easy Very easy Hard Easy

From a security perspective, each of these protocols can be made secure, with varying difficulty and resource
use. XMPP and MQTT, being centralized protocols, can use TLS for authentication and confidentiality. DDS
based solutions have built-in proprietary solutions which are usually not compatible across DDS
implementations. ZMQ has built-in CURVE based security for all primitives except for dish – antenna, where a
custom implementation is required.
In the end, the decision was made to use a decentralized solution – which is more suitable for mesh
networking and maps better to the concept of swarm behavior. Of the two decentralized solutions, ZMQ was
chosen based on its gentler learning curve and better support for the required primitives.

	1 Introduction
	1.1 Gathered Application Requirements
	1.2 Related Documents

	[CRD-58] The Deployment Tool shall deploy artefacts on swarm members
	[CRD-59] The Deployment Agent shall report the deployment status
	[CRD-60] The communication between the Deployment Agent running on swarm members and the Deployment Manager shall be authenticated, authorized, encrypted, and integrity checked.
	[CRD-61] The Deployment Manager shall receive the configuration of the deployment task from the operator prior to deployment
	[CRD-67] All communications between the swarm and the tools in the workbench shall be authenticated, integrity protected and encrypted.
	[CRD-72] The Deployment Manager shall sign all packages with an operator specific key.
	[CRD-103] The Deployment Tool shall provide the means to compile codes on target platforms
	[CRD-104] The Deployment Tool shall provide the means to cross-compile codes for the target platforms
	[CRD-105] The Deployment Tool shall provide the means to compile codes
	2 Background Work
	3 Architecture
	3.1 Terminology
	3.2 Secure Deployment
	3.3 Target Selection
	3.4 Components
	3.4.1 Deployment Manager
	3.4.2 Deployment Agent

	4 Implementation
	4.1 External Interfaces
	4.2 Internal Interfaces

	5 Conclusion
	Acronyms
	List of figures
	List of tables
	References
	Appendices
	Appendix A - Sample Task Description
	Appendix B - Sample Target List

	Annexes
	Annex A - Security Workshop - March 26-27th, Budapest

