

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No. 731946.

D2.8 – VALIDATION FRAMEWORK SPECIFICATION

Deliverable ID D2.8

Deliverable Title Validation Framework Specification

Work Package WP2

Dissemination Level PUBLIC

Version 1.0

Date 2018-06-29

Status Final

Lead Editor Bálint József Jánvári (SLAB)

Main Contributors Regina Krisztina Bíró (SLAB), Bálint József Jánvári (SLAB)

Published by the CPSwarm Consortium

Ref. Ares(2018)4196425 - 10/08/2018

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 2 of 38

Document History

Version Date Author(s) Description

0.1 2017-08-10

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

First Draft with TOC, introduction and brief description of
methodology, as well as templates and a few examples in the
security section

0.2 2017-09-05 Bálint József
Jánvári (SLAB)

Replaced the term “use case” with “scenario” where appropriate,
clarified the description of the goal “Ensuring industrial impact”

0.3 2017-11-24 Regina Krisztina
Bíró (SLAB)

Integrated requirements for the Modelling Tool, Modelling Library,
Optimization Tool and Optimization Simulator, added KPIs and
test cases for the requirements describing the Modeling Tool and
Library.

0.31 2018-01-11 Regina Krisztina
Bíró (SLAB) Refinement of test cases

0.32 2018-01-17 Etienne Brosse
(SOFT) Review of the KPIs and test cases related to the Modelling Tool

0.4 2018-04-20 Regina Krisztina
Bíró (SLAB) Integration of new requirements

0.5 2018-04-22

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

Refined methodology

0.6 2018-05-24

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

Added test cases and KPIs defined for the rest of the components,
marked remaining open questions to be discussed

0.7 2018-06-14

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

Matched evaluation dates to project milestones, changed
methodology, refined some of the test cases

0.8 2018-06-18

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

Added target maturity levels for milestones and made small
adjustments to per test case target maturity levels.

1.0 2018-06-29

Regina Krisztina
Bíró (SLAB),
Bálint József

Jánvári (SLAB)

Final check, integrated comments from internal reviewers

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 3 of 38

Internal Review History

Review Date Reviewer Summary of Comments

2018-06-26 Sisay Chala
(FRAUNHOFER) Approved with minor comments.

2018-06-28 Arthur Pitman (UNIKLU) Approved with minor comments.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 4 of 38

Table of Contents

Document History .. 2
Internal Review History .. 3
Table of Contents ... 4
1 Introduction .. 5

1.1 What is validation and verification? .. 5
1.2 Goals .. 7
1.3 Related documents.. 7

2 Methodology ... 8
2.1 Types of metrics .. 8
2.2 Establishing metrics ... 9
2.3 Continuous validation and verification .. 10
2.4 Templates .. 11

3 Components ... 13
3.1 Modelling Tool .. 13
3.2 Modelling Library ... 17
3.3 Optimization Tool .. 20
3.4 Simulation Tool ... 22
3.5 Code Generation Tool .. 23
3.6 Deployment Tool .. 25
3.7 Abstraction Layer ... 28
3.8 Monitoring Tool .. 31

4 User Experience ... 35
5 Scenarios .. 36
6 Milestones ... 37
Acronyms ... 38
List of figures .. 38
List of tables .. 38
References ... 38

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 5 of 38

1 Introduction

1.1 What is validation and verification?

Validation and verification, often used together in quality management systems, are independent
procedures used to check whether a (software) product, service or system meets predefined requirements
and specifications and fulfills its intended purpose.

Since the usage of these two terms varies - and sometimes they are used interchangeably - the objective
of this chapter is to clarify what we mean by validation and verification. We intend to follow the usual
definitions, simplified as:

• Validation:
Are we building the right system?

• Verification:
Are we building the system right?

More precisely, validation is concerned with assuring that a product, service or system meets the needs
of its customers and other stakeholders, while verification is the evaluation of whether a product, service or
system complies with its requirements and specifications ensuring that the product is well-engineered and
error free. Verification is usually an internal process that helps determine whether the product is of high
quality, but it does not ensure that the product is actually useful.

Figure 1 – Validation and verification

We can distinguish between the two terms by considering their respective roles with respect to the
specification. Validation checks whether the specification captures the stakeholders’ needs, while verification
ensures that the product meets the specification. Evaluation items and activities also differ for the two terms
as seen in Table 1.

Implementation

Specification

Problem

Product

Ve
rif

ic
at

io
n

Validation

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 6 of 38

Table 1 – Comparison of verification and validation

 Verification Validation

Evaluation items

• Plans
• Requirement specifications
• Design specifications
• Code
• Test cases

• Products
• Services
• Systems

Activities ● Reviews
● Walkthroughs
● Inspections

● Testing

A commonly used, but less than ideal approach is that verification is only used to check that the
product satisfies its requirements and validation is performed only at the beginning and end of the project:
for requirements engineering and acceptance testing. However, we cannot assume that the stakeholders’
needs can be captured at once in the beginning of the project, and that these requirements will not change
while the product is being developed. Therefore, following the methodology depicted in Figure 2, both
validation and verification will be applied throughout the lifecycle of the CPSwarm project.

Figure 2 – CPSwarm project lifecycle

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 7 of 38

1.2 Goals

1.2.1 Ensuring industrial impact

From its inception, the CPSwarm project has been striving to create a platform that is relevant to the
current state-of-the-art of the industry and that can offer a solution that is more effective and integrated
than available alternatives.

Since each requirement is related directly or indirectly to one or more industrial scenarios, by verifying
these requirements the Validation Framework also ensures that the development goals align with market
requirements.

1.2.2 Continuous verification of project requirements

The Validation Framework establishes a reference for the continuous verification of project requirements.
The framework provides a stable baseline for measuring the maturity of project components and the status
of the project in general. Future validation and verification activities will be able to use this baseline to
evaluate implemented functionality - including the evaluation of the finished product at the end of the
project.

This continuous validation and verification can aid project management and software development by
providing important feedback on the status of individual components and on the maturity of the project as a
whole. Identification of requirements not yet met by components can also help software development teams
focus their efforts on delivering a working solution.

1.2.3 Quality assurance

By defining ways to evaluate the system as a whole from the perspective of its end users, important
aspects relevant to the quality of the product can be made measurable or at least verifiable. By verifying user
experience requirements and providing continuous feedback on how well these high-level requirements are
met, development efforts can focus on creating a product that not only works, but works well.

1.3 Related documents

ID Title Version Date

D2.1 Initial Vision Scenarios 2.0 M4

D2.3 Initial Requirements Report 1.0 M6

D2.6 Updated Lessons Learned and Requirements Report 1.0 M14

D2.7 Final Lessons Learned and Requirements Report N/A M26

D3.1 Initial System Architecture Analysis & Design
Specification 1.0 M6

D3.2 Updated System Architecture Analysis & Design
Specification N/A M18

D3.3 Final System Architecture Analysis & Design
Specification N/A M30

D8.7 Initial Validation results N/A M24

D8.8 Final Validation results N/A M36

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 8 of 38

2 Methodology

2.1 Types of metrics

2.1.1 Key Performance Indicator (KPI)

Key performance indicators are measurements that are used to evaluate the success of an organization or
particular activities such as projects, programs or other initiatives. KPIs define a set of values against which to
measure performance. These sets of values are called indicators, and can be divided into sub-categories like:

• Quantitative indicators that can be represented by a number

• Qualitative indicators that cannot be represented by a number

• Input indicators that measure the amount of resources used during the creation of the outcome or
during the deployment of a use-case

For strategic development, KPIs can be viewed as objectives to be targeted that will bring the most value
to the CPSwarm project. For deployment, KPIs can pose as a threshold for the definition of a successful
mission concerning the use-cases.

In the case of the CPSwarm Workbench, Key Performance Indicators (KPIs) evaluate the success of the
design and implementation of each component or the workbench as a whole according to the stakeholders’
requirements and specifications. Target values for KPIs were established based on feedback from consortium
members on the planned roadmap of each component.

2.1.2 Test case

Test cases are introduced in order to verify compliance with one or more requirements. The aim of
running a test is to gain information, for example about whether a component will pass or fail the test. Test
cases are the basis of quality management where they are designed to verify the quality, usability and
behavior of the product. Test cases can be formal or informal - formal ones are defined with an input and an
expected output, before the test is run. Formal test cases verify formal requirements in a way that for every
requirement there are two test cases defined: one positive test and one negative test. If a component or
scenario does not hold any formal requirements, informal test cases are introduced based on the normal
behavior of a similar component or scenario.

2.1.3 Maturity

Maturity levels are designed in order to describe the progression and quality of each component and the
workbench as a whole. Maturity is achieved by reaching specific goals and KPIs and by successfully passing
test cases. We define five levels of maturity:

1. Proof of concept (demonstrates feasibility)

2. Working (core features are present)

3. Feature complete (all planned features are present)

4. Optimized (performance matches expectations, reasonably error free)

5. Production ready (meets standards, has documentation, easy to use)

Maturity levels signify milestones on our way to the finished product, and align with the iterative approach of
the CPSwarm project lifecycle – driven by continuous feedback, components should move from being
prototypes to being relevant and applicable in industrial scenarios. ML1 needs to be reached in order to
show off a minimum viable product, while ML2 and ML3 each add new features and opportunities to apply
the software. ML4 and ML5 are related to quality and applicability.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 9 of 38

2.2 Establishing metrics

2.2.1 Identifying relevant KPIs and test cases for components and the whole project

Earlier deliverables, including D2.1 - Initial Vision Scenarios and Use Case Definition and D2.3 - Initial
Requirements Report, have already done much to determine the stakeholder groups and their requirements
as well as to segment the project into components. Building on that work, requirements can be grouped into
three categories:

• Requirements related to individual components

• Requirements related to user experience

• Scenario specific requirements

The first two groups contain requirements common to all scenarios or considered generic enough to be
included in the core set, while scenario specific requirements are only encountered in a specific industrial
scenario. As the definition of requirements progressed, scenario specific requirements were incorporated into
the core set of requirements.

These requirements need to be translated into measurable metrics - either by defining test cases that,
when passed, imply that the requirement has been met, or by finding KPIs and setting their target value in a
way that supports the assumption that the requirement has been met.

The Validation Framework will focus on a component-centric approach, with all test cases and KPIs
inherently bound to one main component. Integration related requirements and user experience
requirements will be grouped in such a way as to fit into this model.

2.2.2 Establish a maturity scoring system for KPIs and test cases

Meeting the target of a KPI or passing a test case indicates that the project is making progress - but to
measure how much, these events need to be linked to specific maturity levels. A KPI might have different
target values for different maturity levels, so for each KPI targets should be set for each maturity level. Tests,
when passed, should also have a target maturity level. A component is considered to have reached a certain
maturity level if all metrics linked to that maturity level have reached their targets. The workbench as a whole
would take on the maturity level of its least mature component.

2.2.3 Set target dates - milestones - for reaching specific maturity levels

Building on the roadmap outlined in the project proposal and the three phases defined, a number of
milestones can be set based on the planned due dates of relevant deliverables, setting target maturity levels
for each component and the project as a whole at that specific milestone. While performing the test cases
and evaluating the KPIs should be performed on a more regular basis to provide continuous feedback, a
comprehensive report on the current maturity level of all components will only be prepared at the end of
Phase 2 and Phase 3, thus targets will only be set for these milestones.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 10 of 38

2.3 Continuous validation and verification

2.3.1 Track and validate changes to project requirements

As project requirements change, the changes need to be validated against the use cases. Once
requirements have actually been changed, metrics need to be adjusted to correctly verify the changed
requirements. New requirements should be carefully examined to ensure that they are related to actual
industrial use cases, while in case of changing or removed requirements it must be ensured that the
applicability of the end product in any of the use cases is not compromised.

2.3.2 Continuously gather data on KPIs and periodically perform test cases

As a follow up of the definition of the metrics above, and as part of T8.4 - Use cases validation, these
metrics need to be gathered and evaluated periodically. If problems are encountered in meeting a KPI or
passing a test case, resources may need to be reallocated or the requirements may need to be reevaluated or
changed - either way, such incidents can be reported and requirements can be adjusted after validation as
part of D2.6 - Updated Lessons Learned and Requirements Report and D2.7 - Final Lessons Learned and
Requirements Report.

2.3.3 At each milestone, assess maturity and provide feedback

On each milestone, the maturity level of components and the system as a whole should be evaluated
and compared to the target maturity level. If the project falls behind its target maturity levels, feedback
should be given to project management on problematic areas and corrections should be made to catch up
with the timeline. The result of these validation activities will be later documented in D8.7 - Initial Validation
results and D8.8 - Final Validation results.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 11 of 38

2.4 Templates

Metrics are defined in the standard format for each type as seen below. Each metric must have a
unique name and must reference the requirements verified.

2.4.1 Template for KPIs

Metric name <name>

Verified requirements <list of relevant requirements>

Measurement <how to measure the metric>

Target values
ML1 ML2 ML3 ML4 ML5

<target> <target> <target> <target> <target>

Notes <any further information, if required>

2.4.2 Template for formal test cases

Metric name <name>

Verified requirements <list of relevant requirements>

Maturity level <target maturity level>

Steps to perform

Positive test Negative test

<list of steps for positive test> <list of steps for negative test>

Expected results <expected results for passing test> <expected results for passing test>

Notes <any further information, if required>

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 12 of 38

2.4.3 Template for informal test cases

Metric name <name>

Verified requirements <list of relevant requirements>

Maturity level <target maturity level>

Steps to perform <list of steps>

Expected results <expected results for passing test>

Notes <any further information, if required>

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 13 of 38

3 Components

This chapter collects the requirements identified concerning each component for the CPSwarm Workbench,
as well as the Test Cases or KPIs and maturity levels identified for each requirement as part of the verification
process. The structure of each sub-chapter is as follows:

• List of identified requirements for the given component

• Description of formal or informal test cases for them (if any)

• Description of the identified KPI and maturity level (if any)

3.1 Modelling Tool

The Modelling Tool is a graphical interface offering functions to model the swarm structure, behavior,
environment and other necessary parameters. The Modelling Tool provides an easy way for swarm experts to
design a swarm without having profound expertise in programming and/or hardware specific knowledge [1].

List of Requirements for the Modelling Tool

CRD-2 The Modelling Tool shall be able to use / reuse models from the Modelling Library

CRD-3 The Modelling Tool shall be able to model the structure of a swarm member

CRD-4 The Modelling Tool shall be able to model the behavior of a swarm member

CRD-6 The Modelling Tool shall be able to model the composition of a swarm

CRD-7 The Modelling Tool shall be able to model fitness function to define the goal of the swarm behavior

CRD-9 The Modelling Tool shall pass the end condition of simulation to the Optimization Tool

CRD-10 The Modelling Tool shall pass the environment model to the Optimization Tool

CRD-11 The Modelling Tool shall pass the swarm model to the Optimization Tool

CRD-12 The Modelling Tool shall pass fitness function to the Optimization Tool

CRD-13 The Modelling Tool shall pass the swarm composition to the Optimization Tool

CRD-21 The Modelling Tool should be able to present the structural diagram of a swarm member

CRD-30 The Modelling Tool shall enable users to create models and publish them in a private library

CRD-31 The Modelling Tool shall contain an editor to formulate the fitness function

CRD-32 The Modelling Tool shall be able to model the behavior of the swarm member using the swarm
member behavior library

CRD-33 The Modelling Tool shall be able to model a local state as a part of the swarm member structure

CRD-54 The Modelling Tool shall be responsible for passing swarm member structure to the code generator

CRD-55 The Modelling Tool shall be responsible for passing swarm member behavior to the code generator

CRD-62 The Modelling Tool shall make it possible to define events

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 14 of 38

CRD-65 The Modelling Tool shall distinguish between swarm, member and component scope events, which
are defined at their respective level in the model hierarchy

CRD-66 The Modelling Tool shall make it possible to trigger events based on the current value of the inputs
and outputs defined for the low-level behavior of the current state

CRD-69 The Modelling Tool shall make it possible to add additional swarm scope events to each state
transition that are triggered when the transition happens

CRD-77 The Modelling Tool shall make it possible to design systems with multiple behaviors where events
can trigger a behavior change

CRD-87 The Modelling Tool shall let multiple high-level behaviors coexist within the same project

CRD-100 The Modelling Tool shall make it possible to specify event scope.

CRD-101 The Modelling Tool shall namespace component scope events to their respective component

Metric name The Modelling Tool is able to use / reuse models from the Modelling
Library

Verified requirements CRD-2, CRD-30

Maturity level ML1

Steps to perform

1. Open the Modelling Tool, create a CPSwarm project and then
open the Modeling Library option.

2. Drag and drop models contained in the Modeling Library to the
actual project created.

Expected results The loaded models can be used as they are or can be tailored according
to specific needs (see the following test cases).

Metric name The Modelling Tool shall be able to model the structure of a swarm
member

Verified requirements CRD-3, CRD-21, CRD-33

Maturity level ML1

Steps to perform

1. Open a CPSwarm project or create a new one in the Modelling
Tool.

2. Assemble the model of the target swarm member using the
Swarm Member Architecture diagram palette: add actuators,
controllers, sensors, data flow indicators etc. to the model to
represent the internal architecture of the swarm member.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 15 of 38

Expected results The created diagram represents the structure of the swarm member.

Metric name The Modelling Tool shall be able to model the behavior of a swarm
member

Verified requirements CRD-4, CRD-32

Maturity level ML1

Steps to perform

1. Open a CPSwarm project or create a new one in the Modelling
Tool.

2. Assemble the behavioral model of the target swarm member
using the Behavioral Modelling diagram palette: add states,
transitions and pseudo-states to the model to represent the
behavior of the swarm member.

Expected results The created diagram represents the behavior of the swarm member as a
state machine.

Metric name The Modelling Tool shall be able to model the composition of a swarm

Verified requirements CRD-6, CRD-48

Maturity level ML1

Steps to perform

1. Open a CPSwarm project or create a new one in the Modelling
Tool.

2. Assemble the model of the target swarm using the Swarm
Architecture diagram palette: add swarms, swarm members,
interfaces, attributes etc. to the model to represent the
architecture of the swarm.

Expected results The resulting diagram can represent the composition of the swarm.

Metric name The Modelling Tool shall be able to model fitness function to define the
goal of the swarm behavior

Verified requirements CRD-7, CRD-31

Maturity level ML2

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 16 of 38

Steps to perform

1. Open a CPSwarm project or create a new one in the Modelling
Tool.

2. Establish the model of the fitness function using the Fitness
Function Specification diagram palette: add the Fitness Function,
parts representing the internal instantiations of components,
ports for data flow communication between components,
attributes etc. to the model to represent the fitness function.

Expected results The fitness function can be passed to the Optimization Tool and the
optimization can be generated (see CRD-12, CRD-20).

Metric name The Optimization Tool is integrated with the Modeling Tool

Verified requirements CRD-9, CRD-10, CRD-11, CRD-12, CRD-13, CRD-31

Maturity level ML1

Steps to perform

The Modelling Tool has to pass the end condition of simulation,
environment model, swarm model, fitness function and swarm
composition to the Optimization Tool:
1. Define a fitness function that describes the goal of the swarm using

the Modeling Tool
2. Generate a Optimization Project using the corresponding module in

the Modelling Tool
3. Export the current project’s parameters to the Optimization Tool.
4. The generated files containing the parameters defined in the

Modeling Tool shall be saved in the dedicated folder from which the
Optimization Tool can load and use them.

Expected results The optimization should be able to run using the passed parameters.

Metric name The Modelling Tool is responsible for passing swarm member structure
to the code generator

Verified requirements CRD-54, CRD-55

Maturity level ML2

Steps to perform
1. When the project to be exported is ready, choose the option in

the Modelling Tool which generates the definition of the swarm
member structure and behavior in a standardized form.

Expected results The files generated by the Modelling Tool can be used as valid inputs to
the Code Generator.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 17 of 38

Metric name The Modelling Tool makes it possible to define events

Verified requirements CRD-62, CRD-65, CRD-66, CRD-69, CRD-100, CRD-101

Maturity level ML2

Steps to perform

1. When creating a low-level state machine for describing the
behavior of a swarm member, create event trigger points
connected to e.g. input/output values and define events that can
refer to other behaviors in the high-level state machine.

2. Mark these events according to their scope – swarm, swarm
member or component, where swarm and swarm member scope
events have to be handled as privileged commands.

Expected results

The high and low-level state machines that describe the behavior of a
swarm member accurately describe the input and output values that can
trigger a change in behavior in different scopes including components,
swarm members or the whole swarm.

Metric name The Modelling Tool makes it possible to design swarm members with
multiple behaviors

Verified requirements CRD-77, CRD-87, CRD-47

Maturity level ML2

Steps to perform

1. Define low level state machines for the desired behaviors of to
the swarm member.

2. Start defining a high-level state machine and perform the steps
described in the test “The Modelling Tool makes it possible to
define events”.

Expected results The high-level state machine now defines the logic and transition
between the different behaviors.

3.2 Modelling Library

The Modelling Library is a collection of reusable CPS models, swarm behavior algorithms, security guidelines
etc. It enables high reusability and interoperability of core functions adopted in swarm development [1].

List of Requirements for the Modelling Library

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 18 of 38

CRD-1 The Modeling library will be a collection of different kinds of reusable components

CRD-22 The Modelling library shall include a library to help in designing a swarm member

CRD-23 The Modelling library shall include a library to help in designing an environment

CRD-24 The Modeling library shall include a library to help in designing a goal

CRD-25 The swarm member library shall contain models for the physical aspects of the swarm member

CRD-26 The swarm member library shall contain models for the behavior of a swarm member

CRD-28 The environment library shall contain models of environments

CRD-29 The goal library shall contain various fitness functions linked to different problems

CRD-34 The Swarm member library shall contain models for sensors and actuators to be used to design a
swarm member

CRD-74 Components in the Modelling Library can have component scope events associated with them,
which are imported when the component is added

CRD-84 The Modelling Library shall include behaviors specific to target hardware platforms that can be used
as safe default contingency plans for each CPS model (soft shutdown)

CRD-86 The Modelling Library shall include a special behavior that switches over the CPS to manual remote
control

Metric name The Swarm member library contains models for sensors and actuators to
be used to design a swarm member

Verified requirements CRD-34, CRD -25, CRD-22, CRD-1

Measurement

Count the number of models for the sensors and actuators to be used
to design a swarm member in the modelling library. Only include
completed models which have successfully been used in an
example/vision scenario. From ML3 the Modeling Library should include
use-case specific solutions for sensor capabilities.

Target values
ML1 ML2 ML3 ML4 ML5

3 5 8 10 15

The above KPI partly measures the requirement CRD-25, however to fully verify it, it also has to reach the
following target maturity levels below.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 19 of 38

Metric name The swarm member library contains models for the physical aspects of
the swarm member

Verified requirements CRD-74, CRD-25, CRD-22, CRD-1

Measurement

Count the number of models for the physical aspects (e.g. sensors,
controllers) of the swarm member in the modelling library. Only include
completed, working models. Each of these shall possess component-
scope events attached, for example events determined by input/output
values.

Target values
ML1 ML2 ML3 ML4 ML5

2 4 8 12 15

Metric name The swarm member library contains models for the behavior of a swarm
member

Verified requirements CRD-86, CRD-84, CRD-26, CRD-22, CRD-1

Measurement

Count the number of models for the behavior of a swarm member in the
modelling library. Only include completed, working models. The
minimum viable behavior for ML2 is including the emergency exit
example (or another toy-example), and from ML3 the Modeling Library
should include behaviors connected to each of the use cases. ML4-5
should contain scenario and capability-specific contingency behaviors of
a swarm member, including “Emergency stop shutdown” behaviors
specific to the hardware platform used and a behavior that describes the
transition to manual remote control.

Target values

ML1 ML2 ML3 ML4 ML5

1 5

8
From ML3

including at
least 1 soft
shutdown

contingency
behavior

12
Including

soft
shutdown
behaviors

for all
hardware

target
platforms

18
Including a

transitioning
behavior to

manual
remote
control

When reached, the above defined KPIs for the requirements CRD-34, CRD-25, CRD-26 and CRD-27 also
describe requirement CRD-22 (namely the Modelling library shall include a library to help in designing a
swarm member) with the minimum of all maturity levels of the four KPIs.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 20 of 38

Metric name The environment library shall contain models of environments

Verified requirements CRD-28, CRD-24, CRD-23, CRD-1

Measurement Count the number of models for environments in the modelling library.
Only include completed, working models.

Target values
ML1 ML2 ML3 ML4 ML5

0 1 3 4 5

When reached, the above defined KPIs for the requirement CRD-28 also describe requirement CRD-23
(namely the Modelling library shall include a library to help in designing an environment) with the same
maturity levels.

When the KPIs for CRD-22 and CRD-23 are reached, they also describe CRD-1 (namely the Modeling library
will be a collection of different kinds of reusable components): the minimum of all maturity levels of the two
KPIs.

Metric name Number of different fitness functions related to different problems

Verified requirements CRD-29

Measurement Count the number of fitness functions related to different problems in
the modelling library. Only include completed, working examples.

Target values

ML1 ML2 ML3 ML4 ML5

0
1 problem
1 fitness
function

1 problem
1 fitness
function

>1
problems
at least 1

fitness
function for

each

>1
problems
at least 1

fitness
function for

each

3.3 Optimization Tool

Due to the complexity of swarm behaviors, in many cases it is very difficult, if not impossible, to define the
exact algorithm to be adopted for each individual member of a swarm. For this reason, an Optimization Tool

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 21 of 38

is envisioned to exploit methods based on Darwinian evolution to optimize the algorithm
automatically, according to the configuration given by users [1].

List of Requirements for the Optimization Tool

CRD-14 The Optimization Tool shall pass operational commands to the Optimization Simulator

CRD-20 The Optimization Tool shall optimize the algorithm according to the fitness score

CRD-56 The Optimization Tool shall pass the optimal behavior to the code generator

CRD-91 The Optimization Tool shall only optimize one behavior at a time, but shall let the simulation used
include other behaviors

Metric name The Optimization Tool passes operational commands to the
Optimization Simulator

Verified requirements CRD-14

Maturity level ML3

Steps to perform Start the optimization using the Optimization Tool and the Optimization
Simulator together.

Expected results The simulation can be performed and the simulated swarm members
behave as indicated by the Optimization Tool.

Metric name The Optimization Tool shall optimize the algorithm according to the
fitness score

Verified requirements CRD-20, CRD-91

Maturity level ML2

Steps to perform

1. Create a fitness function that defines the goal of the swarm
behavior

2. Start the optimization with the fitness function and other
parameters that describe the swarm, including other behaviors
to be included in the simulation, e.g. malicious behavior of some
agents, hardware failure, etc.

Expected results
The Optimization Tool is able to rank the candidate controllers
according to the fitness score, and the optimization stops when the
maximum of the fitness function is reached.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 22 of 38

Metric name The Optimization Tool shall pass the optimal behavior to the Code
Generator

Verified requirements CRD-56

Maturity level ML2

Steps to perform
1. After the optimization is done, export the state machine that

describes the optimized behavior and load the file with the Code
Generator.

Expected results The Code Generator can generate target platform specific code that
implements the optimized behavior.

3.4 Simulation Tool

In order to evaluate an algorithm, the Optimization Tool needs an Optimization Simulator to evaluate the
performance a swarm population within a “controlled” environment. Thanks to the availability of the
Optimization Simulator, different generations of algorithms proposed by the Optimization Tool are
ranked and optimized across multiple simulations, on the basis of achieved performances [1].

List of Requirements for the Optimization Simulator and Simulation Manager

CRD-15 The Optimization Simulator shall simulate swarm composition, swarm member structure

CRD-16 The Optimization Simulator shall simulate environment model

CRD-17 The Optimization Simulator shall calculate fitness score for each simulation

CRD-18 The Optimization Simulator shall pass the fitness score to the Optimization tool

CRD-19 The Optimization Simulator shall pass the sensor data of each swarm member back to the
Optimization Tool

CRD-88 The Simulation Manager shall support simulations where different swarm members have different
behaviors

CRD-90 The Simulation Manager shall support simulations where different hardware components are faulty
or where faults occur stochastically

Metric name The Optimization Simulator enables simulations that describe realistic
scenarios.

Verified requirements CRD-15, CRD-16, CRD-19, CRD-88, CRD-90, CRD-42

Maturity level ML4

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 23 of 38

Steps to perform

1. Define the simulation using the Simulation Manager:
• Composition of the swarm – number of members, list of

behaviors they can perform
• Structure of swarm members – capabilities, hardware

components
• The model of the environment used for the simulation
• Stochastic description of the occurrence of hardware faults
2. Start the simulation using the Optimization Simulator.

Expected results

The Optimization Simulator simulates the scenario described by the
environment model, swarm composition, behaviors and malicious
events such as hardware faults. The Optimization Simulator can feed
back the simulated input data collected by the swarm members into the
Optimization Tool.

Metric name The Optimization Simulator creates and passes the fitness score to the
Optimization Tool.

Verified requirements CRD-17, CRD-18

Maturity level ML2

Steps to perform 1. Start the optimization using the Optimization Tool and the
Optimization Simulator together.

Expected results
After each of the iterations that simulate the behavior generated by the
Optimization Tool, the Optimization Simulator calculates a fitness score
describing it and passes it to the Optimization Tool.

3.5 Code Generation Tool

Algorithms designed and optimized through the CPSwarm components located at the higher logic-levels of
the CPSwarm Workbench will finally be deployed on real-world CPS systems, e.g., robotic platforms.
Optimized algorithms cannot be directly deployed on a target CPS as, on one hand, they are developed and
optimized to be portable across platforms, and on the other hand, they are typically evolved in a behavior /
swarm-centric manner, with less focus on platform-related details such as event delivery subsystems, sensor
communication interfaces, etc.

List of Requirements for the Code Generation Tool

CRD-63 The Code Generator shall generate code that is readable and understandable by humans.

CRD-94 The Code Generator shall receive the model of the high-level behaviour as a state machine, with
additional information passed about each state to define the inputs and outputs of the low-level behavior

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 24 of 38

that is being executed while that state is active

CRD-96 The Code Generator shall be configured to produce code for a specific platform.

CRD-97 The Code Generator shall integrate low-level behavior algorithms generated by the Optimization
Tool

CRD-102 The Code Generator shall integrate low-level behavior algorithms implemented manually

Metric name
The Code Generator shall generate code for a multi-level state machine
incorporating inputs from the Modelling Tool, the Optimization Tool
and the user

Verified requirements CRD-94, CRD-97, CRD-102

Maturity level ML1

Steps to perform

1. Set up a project where some of the states in the behavior are from
the Modelling Library, others are generated by the Optimization
Tool and others are stubbed out and left for the user to implement

2. Have the Optimization Tool generate its own code, then implement
the stubbed out states in order to produce valid code the Code
Generator can integrate

3. Run the Code Generator

Expected results
The Code Generator should generate code that is a valid state machine
and can call the implementations supplied by the Optimization Tool and
the user

Notes Relies on other workbench components to build the behavior.

Metric name The code generated by the Code Generator is tidy and readable

Verified requirements CRD-63

Maturity level ML2

Steps to perform
Perform the steps in the test “The Code Generator shall generate code
for a multi-level state machine incorporating inputs from the Modelling
Tool, the Optimization Tool and the user”

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 25 of 38

Expected results
The generated code should have consistent formatting and naming
conventions. Comments should be present to describe, at the least, each
function, global variable and class.

Metric name The Code Generator can target multiple platforms

Verified requirements CRD-96

Maturity level ML2

Steps to perform

Perform the steps in the test “The Code Generator shall generate code
for a multi-level state machine incorporating inputs from the Modelling
Tool, the Optimization Tool and the user” for at least two different
hardware platforms

Expected results For both platforms, the generated code is valid and can be deployed.

3.6 Deployment Tool

After the code is successfully generated, it must be deployed on different targets. To ease the efforts to
execute and manage the deployment to a group of heterogeneous devices, the Deployment Tool automates
the process according to the configuration provided by the system users. The initial design of the
Deployment Tool offers an over-the-air (OTA) update mechanism to deliver software to swarm members on-
the-go and at large scale.

List of Requirements for the Deployment Tool

CRD-58 The Deployment Tool shall deploy artefacts on swarm members

CRD-59 The Deployment Agent shall report the deployment status

CRD-60 The communication between the Deployment Agent running on swarm members and the
Deployment Manager shall be authenticated, authorized, encrypted, and integrity checked

CRD-61 The Deployment Manager shall receive the configuration of the deployment task from the operator
prior to deployment

CRD-72 The Deployment Manager shall sign all packages with an operator specific key

CRD-73 The Deployment Tool shall implement secure over-the-air update functionality.

CRD-75 The Deployment Agent shall verify the signatures of packages on boot and when updates are
received

CRD-76 The Deployment Manager shall provide a way to generate, import and export operator specific keys
for code signatures

CRD-78 The Deployment Agent shall use the list of trusted certificates supplied when the device is first

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 26 of 38

provisioned to validate signatures

CRD-79 The Deployment Agent shall be responsible for starting, stopping and monitoring the code that has
been deployed, even during startups and shutdowns

CRD-103 The Deployment Tool shall provide the means to compile codes on target platforms

CRD-104 The Deployment Tool shall provide the means to cross-compile codes for the target platforms

CRD-105 The Deployment Tool shall provide the means to compile codes

Metric name The Deployment Tool can deploy a new behavior on a swarm member

Verified requirements CRD-58, CRD-59, CRD-61, CRD-79, CRD-51

Maturity level ML1

Steps to perform

1. Start the Deployment Tool
2. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute
3. Select a swarm member
4. Initiate the deployment of a behavior package

Expected results
The Deployment Tool shows the progress of the deployment process,
which ends successfully. The new behavior can be observed as active on
the swarm member.

Notes Relies on other workbench components to build the behavior.

Metric name Deployed software artefacts are signed and their signatures are verified

Verified requirements CRD-72, CRD-73, CRD-75, CRD-76, CRD-78

Maturity level ML3

Steps to perform

Positive test Negative test

1. Set up the trust relationship
between the swarm members
and the Deployment Tool

2. Perform a deployment as
described in the test “The

1. Break or do not set up the trust
relationship between the
swarm members and the
Deployment Tool.

2. Perform a deployment as

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 27 of 38

Deployment Tool can deploy a
new behavior on a swarm
member”

3. While the swarm member is
inactive, corrupt the signature
of the software package

4. Start the swarm member

described in the test “The
Deployment Tool can deploy a
new behavior on a swarm
member”

Expected results

The deployment itself should be
successful. When the swarm
member is activated after the
signature has been corrupted, it
should refuse to start its behavior
and shut down immediately.

Deployment should fail.

Notes
For platforms requiring compilation on the device, the positive test
should not test the effects of corrupted signatures, since no signature
should be present on the final executable.

Metric name The Deployment Tool can compile code before deployment

Verified requirements CRD-104, CRD-105

Maturity level ML2

Steps to perform
Perform the steps of the test “The Deployment Tool can deploy a new
behavior on a swarm member” with a package and platform
combination that requires cross-compilation.

Expected results The Deployment Tool should show the results of the compilation before
deployment has begun.

Notes Relies on other workbench components to build the behavior.

Metric name The Deployment Tool can compile code after deployment

Verified requirements CRD-103, CRD-105

Maturity level ML2

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 28 of 38

Steps to perform
Perform the steps of the test “The Deployment Tool can deploy a new
behavior on a swarm member” with a package and platform
combination that requires on device compilation.

Expected results The Deployment Tool should show the results of the compilation after
deployment has begun.

Notes Relies on other workbench components to build the behavior.

Metric name The Deployment Tool and the Deployment Agent communicate over a
secure channel

Verified requirements CRD-60, CRD-73

Maturity level ML3

Steps to perform

1. Start capturing swarm communications
2. Perform the steps of the test “The Deployment Tool can deploy a

new behavior on a swarm member”
3. Stop capturing swarm communications
4. Analyze the captured packets

Expected results The captured exchange meets state of the art cryptographic
requirements.

Notes

This test is not as exact as most other tests. Analysis should focus on
ensuring that no parts of the deployment package are transmitted
without encryption and that all the necessary authentication handshakes
take place. The test should be repeated at various stages of the
established trust relationship to see if authentication fails if it is required
to fail.

3.7 Abstraction Layer

To ease the process of generating code to be deployed on target CPS, the CPSwarm project defines a so-
called CPS abstraction layer whose purpose is to decouple the implementation of swarm algorithms from
platform / system-specific function calls and primitives. The CPSwarm abstraction layer is composed by a set
of platform-specific libraries that provide a common, high-level API that enables generated programs to
uniformly interact with concrete CPS functions and subsystems. Depending on the CPS nature and operating
environment the abstraction layer might be implemented as a shared library, as adaptation middleware and
so on. Several different implementations are foreseen mainly including the actual platforms considered by
the project: STEM educational robots, ROS-powered drones and rovers, and automotive fog nodes.

List of Requirements for the Abstraction Layer

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 29 of 38

CRD-83 The Abstraction Layer shall have low level support for remote shutdown requests that work
regardless the status of the current behavior

CRD-85 The Abstraction Layer shall implement a hardware specific safe remote shutdown behavior that
cannot be overridden by the current behavior (hard shutdown)

CRD-98 The Abstraction Layer shall provide APIs to access/control/set-up sensors and actuator on CPSs

CRD-99 The Abstraction Layer shall provide primitives to activate and control high-level CPS routines

Metric name Remote soft shutdown requests are handled by the Abstraction Layer if
the behavior has no handler for them

Verified requirements CRD-83

Maturity level ML2

Steps to perform

1. Set up a swarm where members are running a behavior with no soft
shutdown request handler

2. Start the Monitoring and Configuration Tool
3. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute
4. Issue a remote soft shutdown request to a swarm member

Expected results The swarm member shuts down safely.

Notes Relies on other workbench components to set up the swarm and issue
the request.

Metric name Remote soft shutdown requests are passed to the behavior by the
Abstraction Layer

Verified requirements CRD-83

Maturity level ML3

Steps to perform

1. Set up a swarm where members are running a behavior which
handles soft shutdown request in a distinctive manner

2. Start the Monitoring and Configuration Tool
3. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute
4. Issue a remote soft shutdown request to a swarm member

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 30 of 38

Expected results The swarm member shuts down safely, in a manner consistent with the
behavior specified.

Notes Relies on other workbench components to set up the swarm and issue
the request.

Metric name Remote hard shutdown requests are handled by the Abstraction Layer

Verified requirements CRD-83

Maturity level ML2

Steps to perform

1. Start the Monitoring and Configuration Tool
2. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute
3. Issue a remote hard shutdown request to a swarm member

Expected results The swarm member shuts down safely.

Notes Relies on other workbench components to set up the swarm and issue
the request.

Metric name If the behavior is unresponsive, the Abstraction Layer translates the soft
shutdown request into a hard shutdown request

Verified requirements CRD-83, CRD-85

Maturity level ML4

Steps to perform

1. Set up a swarm where members are running a purposefully
unresponsive behavior

2. Start the Monitoring and Configuration Tool
3. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute
4. Issue a remote soft shutdown request to a swarm member

Expected results The swarm member shuts down safely, in a manner consistent with how
hard shutdown requests should be handled.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 31 of 38

Notes Relies on other workbench components to set up the swarm and issue
the request.

Metric name Number of sensors and actuators supported by the Abstraction Library

Verified requirements CRD-98

Measurement
Sensors and actuators should be visible in the Modelling Library as
building blocks. Count the number of building blocks that reference
sensors and actuators.

Target values
ML1 ML2 ML3 ML4 ML5

3 5 8 11 14

Metric name Number of high-level CPS routines supported by the Abstraction Library

Verified requirements CRD-99

Measurement
High-level CPS routines should be visible in the Modelling Library as
building blocks. Count the number of building blocks that reference
behaviors implemented by the Abstraction Library.

Target values
ML1 ML2 ML3 ML4 ML5

1 2 3 4 5

3.8 Monitoring Tool

The Monitoring and Configuration Tool is responsible for the runtime configuration and reconfiguration of
single CPS and multiple CPSs (CPS swarms), as well as for monitoring the critical system and mission
parameters.

List of Requirements for the Monitoring and Configuration Tool

CRD-36 The Modelling Tool shall provide the type of swarm member, type of data and data source to the
monitoring tool

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 32 of 38

CRD-37 The Monitoring and Configuration Tool shall provide the type and address of swarm member

CRD-89 The Monitoring and Configuration Tool shall be able to trigger remote events on individual swarm
members

CRD-92 The Monitoring and Configuration Tool shall enable the user to launch an external tool to take
remote control of a specific swarm member

CRD-93 The Monitoring and Configuration Tool shall be able to monitor events in all scopes as they are
being triggered by or received on a swarm member

Metric name The Monitoring and Configuration Tool can enumerate the members of
a swarm

Verified requirements CRD-36, CRD-37, CRD-39, CRD-45, CRD-46

Maturity level ML1

Steps to perform
1. Start the Monitoring and Configuration Tool
2. Wait until the tool indicates that it has completed the enumeration

or at most 1 minute

Expected results The Monitoring and Configuration Tool shows all active swarm
members.

Notes

The Monitoring and Configuration Tool should be started on a system
that has already established a connection with the swarm or on a system
that is capable of establishing such a connection using the features built
into the tool itself. The swarm should have at least one active member.

Metric name The Monitoring and Configuration Tool can enumerate properties of a
swarm member

Verified requirements CRD-36, CRD-37, CRD-39, CRD-45, CRD-46

Maturity level ML2

Steps to perform
1. Perform the steps as defined in the test “The Monitoring and

Configuration Tool can enumerate the members of a swarm”
2. Query one of the swarm members for its properties

Expected results
The Monitoring and Configuration Tool shows all properties of the
swarm member, including the type of the property and whether it is
read-only or writable.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 33 of 38

Metric name The Monitoring and Configuration Tool can issue commands to
individual swarm members

Verified requirements CRD-89, CRD-41, CRD-43, CRD-44, CRD-45

Maturity level ML2

Steps to perform
1. Perform the steps as defined in the test “The Monitoring and

Configuration Tool can enumerate the members of a swarm”
2. Issue a command to one of the swarm members

Expected results The swarm member reacts to the command and performs the
associated action.

Metric name The Monitoring and Configuration Tool can enable the user to launch an
external tool to take direct control of a swarm member

Verified requirements CRD-92, CRD-41

Maturity level ML4

Steps to perform

1. Perform the steps as defined in the test “The Monitoring and
Configuration Tool can enumerate the members of a swarm”

2. Issue a request to take remote control of a swarm member
3. Wait until the response of approval and then launch the external

tool

Expected results An external tool is launched and can be used to control the swarm
member directly.

Notes
Not all swarm members need to be compatible with this feature. Ensure
that the selected swarm member has an associated external control tool
and that handover is enabled on the device.

Metric name The Monitoring and Configuration Tool can observe events as they
happen on swarm members

Verified requirements CRD-93, CRD-39, CRD-45, CRD-46

Maturity level ML3

Steps to perform
1. Perform the steps as defined in the test “The Monitoring and

Configuration Tool can enumerate the members of a swarm”
2. Trigger an event on one of the swarm members manually

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 34 of 38

Expected results The Monitoring and Configuration Tool show the event as it happens.

Notes
A special behavior on the swarm member might be necessary to
perform this test. The test should be repeated for each event scope to
ensure that all event scopes are monitored correctly.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 35 of 38

4 User Experience

These high-level user experience requirements are verified by the test cases defined for their relevant
components (included in the list of verified requirements in bold):

List of Requirements for User Experience

CRD-39 The Swarm Operator should be able to monitor the swarm

CRD-41 The Swarm Operator should be able to change the mission on the go

CRD-42 Environment conditions should be simulated

CRD-43 The Mission Planner should be able to configure a mission

CRD-44 The Mission Planner should be able to start a mission

CRD-45 The Mission Planner would like to have a UI to configure a mission

CRD-46 The Swarm Operator would like to have a UI to monitor the swarm in play

CRD-47 The swarm can have heterogeneous or a homogeneous composition

CRD-48 The Swarm Designer should be able to define the composition of the swarm

CRD-51 The Swarm Designer should be able to assign role to swarm member

These requirements have no functional equivalents and as such will not be verified by any of the test cases
defined:

List of Requirements for User Experience

CRD-38 The swarm should consist of self-organizing swarm members

CRD-49 All the swarm members of a swarm should act under only one mission at a time

CRD-50 The Mission Planner should be able to add constraints to a mission

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 36 of 38

5 Scenarios

Instead of defining a separate set of requirements for each vision scenario, use case partners have
been active all the way through the process of defining the requirements for the whole workbench
and have contributed their input and their insights to the requirements for the components. The
requirements thus presented represent the complete set required to use the workbench in each of
the vision scenarios.

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 37 of 38

6 Milestones

As defined in the project proposal, the CPSwarm project has three major phases – synchronized with the
three years of the project. For Phase 1, we can already evaluate the maturity levels of the components using
the metrics defined in this document, and for Phase 2 and Phase 3, we can plan ahead for each component
to set realistic targets that can be met while the project progresses.

Since Phase 1 only includes a subset of the components being developed by the project, the rest were
excluded from this first evaluation. Phase 1 components were evaluated as-is in M18 and this deliverable
presents their maturity at the time this deliverable has been finalized.

Levels marked with an asterisk have no associated tests defined due to lack of more specific requirements –
as the project progresses, new requirements will have to be defined (with respective test cases) to measure
the progress of these components on higher maturity levels. This deliverable will be updated during the
project progress and new results will be documented in the upcoming use case validation deliverables: D8.7 –
Initial Validation Results and D8.8 – Final Validation Results.

MS5 – Phase 1

(current)

MS9 – Phase 2

(planned)

MS13 – Phase 3

(planned)

Co
m

po
ne

nt
s

Modelling Tool ML1 ML2 ML5*

Modelling Library ML1 ML2 ML5

Optimization Tool ML1 ML2 ML5*

Simulation Tool ML1 ML2 ML5*

Code Generation Tool ML2 ML5*

Deployment Tool ML2 ML5*

Hardware Abstraction Layer ML2 ML5

Monitoring Tool ML2 ML5

Project ML1 ML2 ML5

Deliverable nr.
Deliverable Title

Version

D2.8
Validation Framework Specification
1.0 - 29/06/2018

Page 38 of 38

Acronyms

Acronym Explanation

KPI Key Performance Indicator

ML Maturity Level

CPS Cyber-Physical System

OTA Over-The-Air

UI User Interface

List of figures
Figure 1 – Validation and verification ... 5
Figure 2 – CPSwarm project lifecycle... 6

List of tables

Table 1 – Comparison of verification and validation .. 6

References

[1] «D3.1 Initial System Architecture Analysis and Design Specification,» The CPSwarm Project.

	Document History
	Internal Review History
	Table of Contents
	1 Introduction
	1.1 What is validation and verification?
	1.2 Goals
	1.2.1 Ensuring industrial impact
	1.2.2 Continuous verification of project requirements
	1.2.3 Quality assurance

	1.3 Related documents
	1.3.1

	2 Methodology
	2.1 Types of metrics
	2.1.1 Key Performance Indicator (KPI)
	2.1.2 Test case
	2.1.3 Maturity

	2.2 Establishing metrics
	2.2.1 Identifying relevant KPIs and test cases for components and the whole project
	2.2.2 Establish a maturity scoring system for KPIs and test cases
	2.2.3 Set target dates - milestones - for reaching specific maturity levels

	2.3 Continuous validation and verification
	2.3.1 Track and validate changes to project requirements
	2.3.2 Continuously gather data on KPIs and periodically perform test cases
	2.3.3 At each milestone, assess maturity and provide feedback

	2.4 Templates
	2.4.1 Template for KPIs
	2.4.2 Template for formal test cases
	2.4.3 Template for informal test cases
	2.4.4

	3 Components
	3.1 Modelling Tool
	3.2 Modelling Library
	3.3 Optimization Tool
	3.4 Simulation Tool
	3.5 Code Generation Tool
	3.6 Deployment Tool
	3.7 Abstraction Layer
	3.8 Monitoring Tool

	4 User Experience
	5 Scenarios
	6 Milestones
	Acronyms
	List of figures
	List of tables
	References

