

Final Workshop

Towards Smart Autonomous Cyber-Physical Systems: Unmanned Aerial/Ground Vehicles and Robots

CPSwarm Project

Claudio Pastrone, LINKS Foundation, CPSwarm

Turin, December 13th 2019

Swarm Concept

• Swarm

A large number of self-driven entities with local intelligence on board overall presenting collective behavior

Swarm intelligence

emerging ability to solve problems not as single entities but as a swarm

Cyber-Physical Systems

Vision

Interactions amongst self-driven CPSs might lead to new behaviors and emerging properties, often with unpredictable results.

Rather than being an unwanted byproduct, these interactions can become an **advantage** if explicitly managed since early **design** stages.

High-Level Objective

CPSwarm proposes a new science of system integration and tools to support engineering of CPS swarms.

CPSwarm tools will ease development and integration of **complex herds** of **heterogeneous CPS** that collaborate based on local policies and that exhibit a **collective behavior** capable of solving complex, industrial-driven, real-world problems.

CPSwarm at a Glance

- CPSwarm is a 36-months Research and Innovation Action (RIA) funded under H2020 call ICT-01-2016
- Scope: science of system integration in the domain of swarms of CPS
- 10 partners (3 Research Institutes, 1 University, 3 Large Enterprises, 3 SMEs) from 6 EU countries
- Around 4.9 M€ total costs (578 PMs ≈ 16 FTE)

Focus

Drastically Improve support to design of complex, autonomous CPS

Establish reference patterns and tools for integration of CPS artefacts

Provide a self-contained, yet extensible library of re-usable models for describing Cyber Physical Systems

Support the developer with a library of SWarm and evolutionary algorithms for design of Cyber Physical Systems of Systems

Overall enable a sensible reduction in complexity and time of CPS development workflow also automating deployment

Address real industrial needs in CPS design, with a particular focus on the autonomous robotic vehicles, smart logistics domain and freight vehicles

MAIN OUTCOME

- The project has defined a **complete toolchain**, enabling the designer to:
 - Set-up collaborative autonomous CPSs using model-based approaches
 - Simulate the swarm performance with respect to the design goal
 - Massively deploy solutions of "reconfigurable" CPS devices and CPSoS.

Design IDE and Workbench for CPS Swarms

A fully-fledged design and simulation environment, namely the **CPSwarm Workbench**, natively supporting iterative, **computer-aided model based design of CPSs**, with a particular focus on **swarms** of heterogeneous systems.

Three reference Application Scenarios drive the collection of requirements for the development of the **complete CPSwarm toolchain** *supporting the engineering and deployment of CPS swarms*

Swarm Drones

Automotive CPS

Swarm Logistics Assistant

Turin – December 13th, 2019

1

Search & Rescue

Search & Rescue Scenario

Search & Rescue

Search & Rescue Scenario

Vision Scenarios

Swarm Logistics Assistant scenario

Turin – December 1311, 2013

Vision Scenarios

Automotive CPS: Autonomous Freight Vehicles

 Vehicles can create a platoon in the common part of the route

Latest CPSwarm Architecture

THE CPSwarm Launcher

- The binding glue for different CPSwarm components
- Provides the GUI for user to launch different components
- Provides the GUI for user to manage assets files
- Assists user to navigate through swarm design workflow

SWARM MODELING

- Modeling of
 - single CPSs
 - swarm composition
 - behavior (State Machine)
- Extend SysML standard
- Libraries of reusable components

SWARM MODELING

Mar Sar () Mar Sa

Random Walk

Fitness Function Modeling

single CPSs

Modeling of

- swarm composition
- behavior (State Machine)
- Extend SysML standard
- Libraries of reusable components

Turin – December 13th, 2019

SIMULATION & OPTIMIZATION

- The **Simulation Environment** is used • to evaluate the performance of a swarm solution.
- It can be used as a stand-alone component or • in combination with the **Optimization** *Tool* (i.e. FREVO) to iteratively improve the controller algorithm/module considering specific *fitness functions* FP

Final Workshop

SIMULATION & OPTIMIZATION

Integration of **standard opensource** technologies and tools (i.e., Docker, Kubernetes, Thingsboard, ROS) to enable **rapid deployment**, **orchestration and monitoring** of large scale distributed cluster of simulation servers.

A Automation	- 10 m					1.014		
-								
			•	•				
10	-							
-		-						
-		100000		(Constants)		a (
100	B+++	100 mar 1000		0		6		
	2		-	-		÷		
10000	mai							
1100					-	-		
*******				100				
1	B					-		
	-					-	1.00	

Two different tasks are performed

- Interpret CPS models using specific formalisms.
- Generate CPS modules and libraries that can be passed to the Deployment Tool to be installed on the actual CPSs.

SWARM DEPLOYMENT

Over-the-air deployment of platform-specific code to actual CPSs.

Final Workshop

MONITORING & COMMAND

The Monitoring and Command Tool

- monitors the swarm members' behavior
- sends configuration commands to modify the swarm behaviour

CPSwarte	Honker & Command	
	Ereculative Parts	
t-an-raising	Annalogue Age Channel (Channel (C	
And the second second	Constant Gen Produced in Proceeded	
tana damantar		Labor (Lane State of Laboration
¥ 1-ar-Decome		

Open Source Components

https://github.com/cpswarm -•

https://www.cpswarm.eu

YouTube Channel

CPSwarm

Final Workshop

Towards Smart Autonomous Cyber-Physical Systems: Unmanned Aerial/Ground Vehicles and Robots

Claudio Pastrone

LINKS Foundation - CPSwarm

claudio.pastrone@linksfoundation.com

https://www.cpswarm.eu

The projects leading to this application have received funding from the European Union's Horizon 2020 research and innovation program

http://www.cpswarm.eu

∑ Follow @CPSwarm_EU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731946.