

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D6.3 – INITIAL CPS SYSTEM DESIGN OPTIMIZATION AND FITNESS
FUNCTION DESIGN GUIDELINES

Deliverable ID D6.3

Deliverable Title Initial CPS System Design Optimization and Fitness Function
Design Guidelines

Work Package WP6

Dissemination Level PUBLIC

Version 1.0

Date 30-06-2018

Status Final

Lead Editor Midhat Jdeed (UNIKLU)

Main Contributors Arthur Pitman (UNIKLU)

Published by the CPSwarm Consortium

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 2 of 21

Document history

Version Date Author(s) Description

0.1 2018-04-04 Midhat Jdeed (KLU) Initial TOC

0.2 2018-04-06 Midhat Jdeed (KLU) Assignment of partners to sections

0.3 2018-05-09 Midhat Jdeed (KLU) CPS design section

0.4 2018-05-09 Midhat Jdeed (KLU) Evolutionary optimization section

0.5 2018-05-18 Midhat Jdeed (KLU) Fitness function design guidelines
section

0.6 2018-06-04 Midhat Jdeed (KLU) Integration of partner contributions

0.61 2018-06-07 Wilfried Elmenreich (KLU) Updating the fitness function
design guidelines section

0.62 2018-06-12 Arthur Pitman (KLU) Further integration of partner
contributions

1.0 2018-06-30 Arthur Pitman (KLU) Final version

Internal Review History

Review
Date Reviewer Summary of Comments

2018-06-20 Regina Krisztina Bíró
(SLAB) Few modifications and comments.

2018-06-27 Etienne Brosse
(SOFTEAM) Minor comments.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 3 of 21

Table of contents

Contents

Document history ... 2
Internal Review History .. 2
Table of contents .. 3
1 Executive summary .. 4
2 Introduction .. 5

2.1 Scope .. 5
2.2 Document organization ... 5
2.3 Related documents.. 5

3 CPS design optimization (KLU) ... 6
3.1 Designing swarms of Cyber-Physical Systems (CPSs) ... 6
3.2 Evolutionary optimization ... 7
3.3 FREVO as an optimization tool ... 9

4 Fitness function design .. 10
4.1 Main properties... 10
4.2 Fitness function design guidelines .. 10
4.3 Fitness function design in the CPSwarm Workbench .. 11

5 Case study on the Search and Rescue Scenario .. 13
5.1 An example Search and Rescue scenario (simulated environment) .. 13
5.2 Coverage with a Swarm of Drones .. 13
5.3 Fitness Function Comparison .. 15

6 Conclusion ... 19
Acronyms ... 20
List of figures .. 20
List of tables .. 20
References ... 21

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 4 of 21

1 Executive summary

Deliverable D6.3 - Initial CPS System Design Optimization and Fitness Function Design Guidelines describes
the optimization of CPSs using heuristic search approaches and methods for assessing their performance.
Special emphasis is given to the development of fitness functions that guide the optimization process. First,
this deliverable presents a review of typical optimization methods and evolutionary optimization. Following
this, it outlines existing approaches for designing fitness functions and highlights the main challenges. It then
considers how this process can be streamlined using the CPSwarm Workbench. Finally, a case study on the
Search and Rescue (SAR) scenario is introduced to examine the effectiveness of the technique.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 5 of 21

2 Introduction

2.1 Scope

This deliverable considers the design of optimal swarms of Cyber Physical Systems (CPSs) and the
corresponding fitness function used in the optimization process and how this can be accomplished using the
CPSwarm Workbench. This deliverable does not cover the implementation of the interface between the
simulation and optimization environments, such as FREVO and external simulators, in the CPSwarm
Workbench. This interface will be covered in deliverable D6.5 ‘Initial integration of external simulators’.

2.2 Document organization

The rest of this deliverable is structured as follows. First, it presents a review of optimization techniques for
swarms of Cyber-Physical Systems focusing on evolutionary approaches. Then, FREVO - an evolutionary
optimization tool - is introduced together with the main steps for optimizing the design of swarms of Cyber-
Physical Systems. Following this, the deliverable presents an outline of the fitness functions which guide the
optimization process together with the steps to design them in the CPSwarm Workbench. Finally, a case
study on the Search and Rescue scenario is presented which addresses the effect of fitness function design
on the performance of swarms of Cyber-Physical Systems.

2.3 Related documents

ID Title Reference Version Date

[D3.1] Initial System Architecture & Design Specification D3.1 1.0 M8

[D6.1] Initial Simulation Environment D6.1 1.0 M9

[D5.2] Initial CPSwarm Modelling Tool D5.2 1.0 M9

[D5.1] CPSwarm Modelling Language Specification D5.1 1.0 M12

D3.2 Reference to this deliverable is made in this document

D2.1 Reference to this deliverable is made in this document

D2.2 Reference to this deliverable is made in this document

D4.5 Reference to this deliverable is made in this document

D6.5 Reference to this deliverable is made in this document

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 6 of 21

3 CPS design optimization (KLU)

3.1 Designing swarms of Cyber-Physical Systems (CPSs)

The behaviour and the interactions among CPS swarm members remain a complex topic especially in
environments where dynamic interactions occur. In particular, it is often difficult to derive the requirements
for an individual member within a swarm from the desired global behaviour [1]. Individual theories allow
formal descriptions of different aspects of CPS design. Those theories comprise physical, technical, and
organizational perspectives at different levels of detail. As shown with a conceptual map in Figure 1,
considering even only a subset of topics surrounding the design of CPSs leads to a tremendous increase in
complexity. Although this list is far from complete, the need for design and deployment methodologies for
CPSs is clearly visible [2].

Figure 1: The complexity of designing CPSs

As outlined in [3], the CPSwarm project provides a toolset for the CPS design process (see Figure 2). Initially,
a Modelling Library - consisting of formal representations of CPS subsystems, CPS base functions, security
recipes, behaviour routines, swarm and self-organization algorithms, and human-to-CPS interaction patterns
- is constructed as a cornerstone upon which the project is founded. Designing a CPS with this approach
assumes that the initial problem definition is known and properly defined during the modelling phase. Then,
once the conditions for a CPS are set, the system emerges over iterations though optimization based on
simulation. In each iteration, the simulation results are validated against the acceptance criteria and restricted
by a defined fitness function. Once the design and the engineering of the algorithms for the CPSs are
complete, the final stage is to start the deployment by automatically transforming the generated code to
hardware specific requirements.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 7 of 21

Figure 2: The CPSwarm high-level architecture and concept of designing swarm of CPSs

CPS designs may be optimized using several swarm intelligence algorithms such as ant colony, fish swarm
and particle swarm optimization. On the other hand, evolutionary optimization can be used for designs which
require an optimum solution in an uncertain environment. The CPSwarm project supports evolutionary
optimization by directly integrating FREVO into the CPSwarm Workbench, see Section 3.3.

3.2 Evolutionary optimization

Designing swarms of CPSs poses two main challenges. First, selecting the hardware that best suits the
requirements of the swarm, and second, designing the control algorithm defining the behaviour of the
individual swarm agents. Approaches for designing the local controllers of a swarm of CPSs, or more
generally self-organizing systems, can be categorized into two groups: hierarchical top-down designs
starting from the desired global behaviour of the swarm and bottom-up designs based on defining the
swarm agents and observing the resulting global behaviour [4]. The design using either approach is still a
difficult process as neither can predict the resulting swarm behaviour based on the complex interactions
between the agents [5]. This is especially true in dynamic environments. Evolutionary methods can be used to
tackle such design challenges.

Designing a swarm of CPSs by using evolution is mostly an automatic design method that creates an
intended swarm behaviour as a result of a bottom up process starting from interactions between very small
components. The process gradually modifies potential solutions until a satisfying result is achieved. Such an
evolutionary design approach is based on evolutionary computation techniques and can be done either on
individual or on a swarm level.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 8 of 21

Typically, the process of evolving a behaviour starts with the generation of a random population of individual
behaviours. Each of these individual swarm-level behaviours is evaluated through simulation and ranked by
computing a fitness function. Nevertheless, designing by evolution poses several challenges, including no
guaranteed, predictable convergence, complex data structures and the high costs of evolutionary
computation itself.

Furthermore, while designing a swarm of CPSs, a solution refers to a control algorithm of individual agents
that is gradually improved during the optimization process. As experiments with real hardware require an
extensive amount of time, such methods typically employ accurate and fast simulations to evaluate the
performance of candidate solutions in the evolutionary process. The evaluation of algorithms in evolutionary
optimization can be easily executed in parallel, which is for example supported in the FRamework for
EVOlutionary design (FREVO), by using multiple cores on the same machine or by distributing the
evolutionary optimization with a client-server protocol [6].

In summary, designing by evolution can be used to tackle challenges such as scalability and generality, as
well as adaptive self-organization. Neither of these two issues is easy to handle, especially in changing
environments and with dynamic interactions among individual agents of a system or a swarm. According to
Fehervari and Elmenreich [7], there are six basic tasks related to evolution which designers must face while
constructing a system model (Figure 3):

Figure 3: Evolutionary design methodology

The problem or task description gives a highly abstracted vision of the problem. This includes constraints and
the desired objectives for such a problem.
The simulation setup transfers the problem description into an abstracted problem model.
The interaction interface defines the interactions among agents and their interactions with the environment.
The evolvable decision unit represents the agent controller and is responsible for achieving the desired
objectives, i.e., the global behaviour of a swarm to achieve a common goal.
The search algorithm performs the optimization using evolutionary algorithms by applying the results from
the above steps.
The fitness function represents the quality of the optimization result in a numerical way. It is highly
dependent on the problem description.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 9 of 21

3.3 FREVO as an optimization tool

FREVO is an open-source framework for evolutionary design or optimization tasks. According to the
CPSwarm Workbench design, presented in D5.2, FREVO is integrated directly into the CPSwarm Workbench
as an optimization tool and receives a complete set of modelling details for a problem from the Modelling
Tool.

FREVO automates the problem setup phase, makes it straightforward to define local intelligence and
interactions, and performs a search for best solutions that fit with genetic algorithms. Basically, there are
many evolutionary and representation methods in FREVO, documented in [8], such as NNGA classic and
CEA2D, which are genetic algorithms capable of evolving any kind of representation.

To develop a solution, FREVO needs an input consisting of several components as illustrated in Figure 4. First,
it is necessary to define the problem where the evaluation context of the agent must be implemented.
Second, a controller representation should be selected that describes the structure of a possible solution.
Third, the optimization method must be selected to optimize the chosen controller representation to
maximize the fitness returned from the problem definition. Finally, the ranking module is configured to
evaluate all agents in a problem and return a ranking of the candidates based on their fitness.

Figure 4: FREVO Architecture

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 10 of 21

4 Fitness function design

A fitness function assesses the behaviour of a swarm of CPSs: The best performance of the design
optimization can be achieved by maximizing that fitness function. In literature, it has many names, such as
fitness function, cost function, or utility function. Basically, it is a numerical representation that guides an
optimization algorithm to find the best solution and it can be also a result of a continuous monitoring of
mission parameters during a simulation run. It is highly dependent on the problem in question and thus
there is no straightforward way or rule to be followed while designing a fitness function. It is a critical part of
an optimization process as its effectiveness is directly related to the effectiveness of this function. For
example, in the SAR scenario, see Section 5, a fitness function can be defined based on the search time or
success probability.

4.1 Main properties

A fitness function that is designed to reward a desired behaviour of swarm of CPSs is highly problem-
dependent. Nevertheless, many studies in the field of evolutionary optimization have considered generic
methods for fitness function design. In general, these methods may be categorized into a three-dimensional
fitness space [9, 10]:

1- Functional vs. behavioural: A functional fitness is based on components that directly measure the
way in which the system functions. A behavioural one rewards the system for displaying a given
behaviour.

2- Global vs. local: Global fitness rewards the system based on information that is available to an
external observer, while the local one is restricted to information available to a single component.

3- Explicit vs. implicit: An explicit function rewards the way in which a certain goal is achieved, while
implicit fitness is focused on how much the goal is reached (e.g. a distance). Implicit functions are
also extensively used in search algorithms operating in the behavioural space.

4.2 Fitness function design guidelines

In general, the applicability and performance of a fitness function depends on the employed optimizer, thus
there are no universally suitable fitness functions [11]. However, in the scope of the CPSwarm Workbench, we
have identified the following guidelines for defining working fitness functions:

Defining scope and modelling sub-problems for complex goals: As mentioned above, a fitness function
for a problem is directly related to the specifications for that problem. Nevertheless, a good start for
designing an effective fitness function is to define the specifications for a given problem. Moreover, if an
objective proves to be too difficult for a system, it might help to decompose it into simpler sub-objectives
with lower utility values, for example, to evolve robots to play soccer it is good to reward players for kicking
the ball since it directly correlates to the number of goals and consequently to the fitness of the solution [10].

Topology of fitness landscape: In general, adversary fitness functions [11], fitness functions with a large
stochastic component (noise) and fitness functions with local cost minima can affect the optimization time
and quality of optimization outcome. While the fitness is initially derived by the problem description, a
refinement of the fitness function towards a "smooth topology" can significantly improve the result.
Furthermore, the search space can be reduced by assigning high penalties towards unwanted behaviours (an
example is a robot car that should go forward and orient itself, in this case, going backward could be
excluded as behaviour). However, keep in mind that excluding certain behaviours might accidently cut off
solutions which are not obvious but have superior performance in the end.

Combined fitness functions: In many cases the fitness function is comprised of orthogonal goals, for
example, a robot swarm could be required to stay together, while having a second goal to move forward as a
swarm. Typically, these goals can be easily expressed as separate fitness functions but not easily into a single

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 11 of 21

combined one. Some optimization algorithms can perform a multi-dimensional search which yields results in
form of a set of non-dominated solutions. After all, this requires a selection based on a combined fitness
before deployment and not all optimization algorithms in CPSwarm support this approach. Therefore, fitness
functions are often described as a weighted sum of criteria, which shifts the problem to defining proper
weights. While this ultimately depends on initial requirements, a quick guideline can be provided to
normalize criteria based on their measured variance in order to get a set of equally matched criteria.

Computational effort to derive the fitness value: In some cases where the fitness function is derived from
a simulation of the target system, the computational effort for computing the fitness function can become
the defining part of the overall evolutionary algorithm. In some cases, typically early in the optimization
process, a simpler fitness calculation which is considerably faster could significantly speed up the process. For
the example where a fitness function is derived by a simulation this could be done with fewer repetitions of
simulations (e.g. averaging the results of a few simulations in the beginning and increasing this amount at
later generations, where accuracy is needed), shorter simulation time (adjusting simulated time depending on
generations) or reduced accuracy (simulating with larger time steps/lower resolution in early generations).

4.3 Fitness function design in the CPSwarm Workbench

As indicated in Section 4.2, the design of the fitness function must follow the definition of the problem. For
this reason, during the modelling phase, the CPSwarm Workbench allows a fitness function to be associated
with a behaviour, after that the same Modelling Tool (i.e. Modelio1) has been used to define the state
machine to address the problem. Furthermore, as shown in the SAR scenario in the next section, the state
machine approach may be used to divide the complex scenario into several simpler states (e.g. the SAR
scenario is subdivided into Coverage, Tracking, and Find Exit states) and then a separate fitness function can
be designed for each state.

As indicated in the guidelines for designing the fitness function, the CPSwarm Workbench allows high
penalties to be assigned to undesirable behaviours to reduce the time required to find the optimal result.
Furthermore, it allows the optimization of the algorithm to be executed in two different steps: Firstly, the user
can design a simple fitness function to be applied on a large set of candidates. Then, leveraging the initial
results, a more complex fitness function can be applied to a restricted set of candidates, obtaining fine
grained results. Typically, the fitness function is designed in the Modelling Tool, which allows the fitness
function to be described using mathematical expressions, such as those presented in Section 5.3. When the
fitness function has been modelled, the Modelling Tool uses this model to generate the code that will then
be used in the rest of the Workbench.
The model of the fitness function is also stored in the Modelling Library, allowing it to be reused in different
contexts. Furthermore, the library is pre-loaded with a set of default fitness functions associated with the
behaviours designed for the proposed scenarios. For example, in the SAR scenario, the library could be
preloaded with default fitness functions for all the possible states:

• To evaluate the Coverage algorithm, a fixed number n of checkpoints could be distributed over the
area to be patrolled. In this case, the fitness function could count the number of checkpoints a drone
flies within a distance d within a time interval t (other examples are presented in Section 5.1).

• To evaluate the Tracking algorithm, the fitness function can consider the proportion of time in which
the drone is within distance d of the objective.

• For the Find Exit state, the value to be evaluated can be the average time required to escort all
targets to an exit within a maximum allowed time t.

1 https://www.modelio.org/

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 12 of 21

It is important to note that all the fitness functions - described through mathematical expressions - are
reusable in different contexts by referencing parameters/properties of the model. For the example described
in Section 5.1, during the modelling phase in Modelio, the user can decide what fitness function to apply to
the Coverage state optimization, for example the Coverage function, which measures the number of visited
fields within a given timeout. After selecting this fitness function, the designer can set its parameters (i.e. the
value of the timeout, the size of the arena or the grid map).

The CPSwarm Workbench has a distributed architecture for the Simulation and Optimization Environment
(see deliverable D3.2 – Updated system architecture & design specification, for the description of the
different components), with several simulation engines distributed on different machines, each wrapped by a
Simulation Manager. The distributed simulators are coordinated by a centralized component, called the
Simulation and Optimization Orchestrator (SOO), which handles their interaction with the Optimization Tool
(i.e. FREVO).
When the user has finished designing the fitness function and setting the desired values for the parameters,
Modelio generates the related code, which is passed to the SOO through the Launcher.

The SOO chooses appropriate simulator instances for the optimization process and sends the models and the
code of the fitness function to the related Simulation Managers. The SOO then instructs the Optimization
Tool to start the optimization process and to use the configured simulation engines for the simulation.
Following this, the Optimization Tool sends the candidates to be evaluated to the Simulation Managers.
These execute the simulations and use the fitness function code to evaluate the results of each simulation
and to calculate the fitness score of the candidate to be returned to the Optimization Tool, which uses these
values to evolve the algorithm.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 13 of 21

5 Case study on the Search and Rescue Scenario

5.1 An example Search and Rescue scenario (simulated environment)

A prominent example for the demonstration of swarms of CPSs is the SAR scenario. In such a scenario,
multiple agents are deployed in an a-priori unknown environment to search for victims (referred to as
targets) and to support their rescue.

In the CPSwarm project, the SAR scenario is one of the main vision scenarios used for demonstrating the
Workbench (see deliverables D2.1 and D2.2). In this scenario, a swarm of drones searches a given area for
targets and tracks found targets, supported by a swarm of ground rovers that guides the found targets to a
safe place. This swarm behaviour may be formalized using state machines, as shown in Figure 5. For more
details refer to future deliverable D4.5.

Figure 5: High-level states of the CPSs in the Search and Rescue scenario.

For each state of this state machine, different algorithms can be employed. These can be either bio-inspired
swarm intelligence algorithms or algorithms that are evolved with evolutionary optimization. In this case
study, we choose the coverage state to be evolved for further analysis and examine the influence of different
fitness functions on the optimization process.

5.2 Coverage with a Swarm of Drones

For evolutionary optimization, we must complete the six tasks mentioned in Section 3.2.
1. Task Description

In the coverage state, multiple drones fly over a given environment to localize the targets. The
drones work together in a swarm to minimize the time until the targets are found. Ideally, the
environment is covered completely by the drones while minimizing the overlap between the areas
covered by each drone.

2. Simulation
The coverage task is simulated with a given number 𝑛 of drones that can move in discrete time and
discrete space. The simulation always runs until a given maximum time 𝑡 is reached. The environment
is a rectangular, two-dimensional grid consisting of 𝑤 horizontal and ℎ vertical cells, yielding an area
of 𝑤 ⋅ ℎ grid cells. It is assumed that the drones fly in one plane over the environment of interest.
Cells can either be occupied by a drone, free, or occupied by an obstacle. Obstacles are placed
randomly and occupy a given percentage 𝑜 of the environment. In each time step a drone can move

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 14 of 21

to one of the four neighbouring fields if they are free. For a grid cell to be covered, at least one
drone must visit that cell during the simulation.

3. Interaction Interface
Each drone can sense whether neighbouring cells are occupied and differentiate between obstacles
and drones. Obstacles are detected in the von Neumann neighbourhood consisting of the four
closest cells. Drones are detected in the Moore neighbourhood consisting of the eight closest cells.
This results in 12 sensor values as input to the decision unit. Each drone can move to one of the cells
in the von Neumann neighbourhood. The direction to move in is given as x and y offset. Therefore,
there are two actuator commands returned by the decision unit.

4. Decision Unit
The decision unit is a time-discrete, recurrent artificial neural network (ANN) with one hidden layer,
resulting in three layers total. The ANN is fully meshed meaning every neuron is connected to every
other neuron and itself.

5. Search Algorithm
The search algorithm is a neural network genetic algorithm (NNGA) that supports multiple
populations and different selection schemes while trying to maximize the population diversity. The
evolutionary search is performed for 100 generations where each generation has a population of 200
candidate solutions.

6. Fitness Function
The fitness function measures the performance of the swarm. Regarding the coverage task, there are
many parameters that can be used to construct a fitness function. A selection of some parameters is
given below.

• Swarm size 𝑛.
• Number of time steps 𝑡 in the simulation.
• Size of the environment: Width 𝑤, height ℎ.
• Grid map of the environment:

𝑀 = �𝑚𝑥,𝑦�𝑥 ∈ [0,𝑤),𝑦 ∈ [0, ℎ)�

𝑚𝑥,𝑦 = �0, if cell (𝑥,𝑦)is free
1, if cell(𝑥,𝑦)is occupied

• Number of visits to each cell of the grid map:

𝑉 = �𝑣𝑥,𝑦�𝑥 ∈ [0,𝑤),𝑦 ∈ [0, ℎ)�
𝑣𝑥,𝑦 ∈ [0,𝑛 × 𝑡]

All the parameters require global observation of the swarm. They can be used to implicitly measure
the behaviour of the swarm, see Section 4.1. Using these parameters, different fitness functions can
be constructed:

• Coverage: Percentage of visited fields after given timeout
• Redundancy: Number of times that the fields have been visited
• Actuality: Maximum time between two visits of a field
• Duration: Time until everything is covered
• Activity: Percentage of agents working simultaneously
• Distribution: Spatial distribution of agents

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 15 of 21

5.3 Fitness Function Comparison

Two of the fitness functions mentioned in the previous section have been implemented and evaluated. These
are the coverage function, called 𝐶 and the redundancy function, called 𝑅. They are formalized in the
following way.

𝐶 =
∑ ∑ �

𝑉𝑥,𝑦
𝑛 ⋅ 𝑡�

ℎ
𝑦=0

𝑤
𝑥=0

𝑤 ⋅ ℎ − ∑ ∑ 𝑀𝑥,𝑦
ℎ
𝑦=0

𝑤
𝑥=0

𝑅 =
∑ ∑ �

𝑉𝑥,𝑦
𝑛 ∙ 𝑡� ⋅ �1 −

𝑉𝑥,𝑦 − 1
𝑛 ⋅ 𝑡 �ℎ

𝑦=0
𝑤
𝑥=0

𝑤 ⋅ ℎ − ∑ ∑ 𝑀𝑥,𝑦
ℎ
𝑦=0

𝑤
𝑥=0

To compare the fitness functions quantitatively, the following performance metrics are proposed:

• Complexity:
◦ How computationally complex is it to compute the fitness?

• Convergence:
◦ Does the fitness converge?
◦ What is the maximum fitness reached?
◦ How fast does the fitness converge?

• Sensitivity:
◦ How do parameter changes influence the convergence?

Both fitness functions have the same complexity

𝒪(𝑤 × ℎ)
which is due to the fact that both iterate the environment grid map and the visited grid once. Therefore, no
advantage can be seen for either fitness function from the complexity analysis.

The optimization process is executed for a number of different parameter settings. All possible parameter
values are given in Table 1.
. Simulations were carried out for all parameter permutations except simulation time and environment size
that were coupled such that 𝑡 = 𝑤2 = ℎ2 holds at all time. This yields a total of 300 different setups. To
accurately measure the fitness of the simulations with both fitness functions, the optimization for each setup
is repeated 25 times with varying random number generator seed. This results in a total of 7500
optimizations.

Table 1: Parameter settings for evolutionary optimization

Fitness function 𝒇 𝐶, 𝑅

Simulation time 𝒕 100, 400, 900, 1600, 2500

Environment size 𝒘 = 𝒉 10, 20, 30, 40, 50

Swarm size 𝒏 1, 2, 4, 8, 16

Obstacle percentage 𝒐 0, 5, 10, 15, 20, 25

The convergence behaviour of each fitness function during optimization is shown in Figure 6. Both converge
with only minor differences. The coverage function is on average 0.9 percentage points better than the
redundancy function. This is due to the fact that both functions compute coverage similarly but the
redundancy function is penalized for redundant visits.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 16 of 21

Figure 6: Average fitness with 10% and 90% percentiles for both fitness functions.

The convergence is quantified in Table 2, indicating what value the fitness converges to and how fast.

Table 2: Convergence of average fitness for different functions

 Coverage Redundancy

Maximum
fitness 75.83 % 74.90 %

Generations
to reach 90%
of maximum
fitness

23 23

As shown above, the coverage function has a slight advantage over the redundancy function.

A sensitivity analysis was performed to determine the robustness of the fitness functions to parameter
changes. Figure 7 shows an example of the two fitness functions for a different parameter setup. It can be
seen that the setup affects both fitness functions differently.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Fi
tn

es
s

Generations

Coverage Redundancy

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 17 of 21

Figure 7: Average fitness with 10% and 90% percentiles for both fitness functions, varying swarm sizes, 𝒕 = 𝟗𝟗𝟗,

𝒘 = 𝒉 = 𝟑𝟗, and 𝒐 = 𝟏𝟗.

Figures 8 to 13 show the influence of the parameters on the maximum fitness and on the speed of
convergence, respectively. In both cases, the fitness of the optimization runs is averaged over the remaining
parameters that are not mentioned. It can be seen that both fitness functions react similarly to parameter
changes due to the fact that both functions are computed similarly. Nonetheless, in most cases the coverage
function slightly outperforms the redundancy function.

Looking at the parameters swarm size 𝑛 (Figure 10 and Figure 11) and obstacle percentage 𝑜 (Figure 12 and
Figure 13), the results show an increased performance for larger swarms and less obstacles. This can be
explained trivially by the fact that with larger swarms more parallelization happens and with fewer obstacles
the swarm members can move more freely. It can also be seen from Figure 13 that without any obstacles the
fitness converges very fast and the evolutionary process does not need to be that long. It must be noted that
the swarm size is still low enough to not create congestions in the environment.

A very interesting trend can be seen in Figure 9. The convergence speed of the optimization decreases with
increasing environment sizes but only up to a certain size. After that, the optimization converges faster again.
This suggests that small environments have a negative effect on the evolutionary optimization and should be
avoided for the chosen fitness functions.

To conclude this comparison, we propose to use the coverage fitness function as it usually outperforms the
redundancy fitness function while being simpler to compute.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

Fi
tn

es
s

Generations

Coverage Redundancy

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 18 of 21

Figure 8: Maximum fitness reached on average

for varying environment size 𝒘 = 𝒉.

Figure 9: Generations to reach 90% of max. fitness

for varying environment size 𝒘 = 𝒉.

Figure 10: Maximum fitness reached on average

for varying swarm size 𝒏.

Figure 11: Generations to reach 90% of max. fitness

for varying swarm size 𝒏.

Figure 12: Maximum fitness reached on average

for varying obstacle percentage 𝒐.

Figure 13: Generations to reach 90% of max. fitness

for varying obstacle percentage 𝒐.

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

Fitness

En
vi

ro
nm

en
t S

iz
e

Coverage Redundancy

0 10 20 30 40

10

20

30

40

50

Generations

En
vi

ro
nm

en
t S

iz
e

Coverage Redundancy

0 0.2 0.4 0.6 0.8 1

1

2

4

8

16

Fitness

Sw
ar

m
 S

iz
e

Coverage Redundancy

0 10 20 30 40

1

2

4

8

16

Generations

Sw
ar

m
 S

iz
e

Coverage Redundancy

0 0.2 0.4 0.6 0.8 1

0
5

10
15
20
25

Fitness

O
bs

ta
cl

e
Pe

rc
en

ta
ge

Coverage Redundancy

0 10 20 30 40

0
5

10
15
20
25

Generations

O
bs

ta
cl

e
Pe

rc
en

ta
ge

Coverage Redundancy

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 19 of 21

6 Conclusion

This deliverable describes the main steps for a swarm of CPSs design optimization using an evolutionary
approach and provides initial guidelines for designing a fitness function that rewards desirable behaviour of a
swarm of CPSs. The document proposes that the fitness function design for a system is highly dependent on
the system specifications. Therefore, defining the specifications of a system or a problem will give hints for
the design of an effective fitness function. The comparison of the effect of the different fitness function, for
the coverage state using a swarm of drones, shows interesting results. For example, up to a certain size of the
environment, the convergence speed of the optimization decreases with larger environments.

Future results and the progress of CPSwarm project with respect to evolution and fitness function design will
be addressed in the Final CPS System design optimization and Fitness function design guidelines report.

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 20 of 21

Acronyms

Acronym Explanation

CPSs Cyber-Physical Systems

FREVO FRamework for EVOlutionary design

SOEnvO Simulation and Optimization Environment Orchestrator

SAR Search and Rescue

ANN Artificial Neural Network

NNGA Neural Network Genetic Algorithm

List of figures
Figure 1: The complexity of designing CPSs .. 6
Figure 2: The CPSwarm high-level architecture and concept of designing swarm of CPSs ... 7
Figure 3: Evolutionary design methodology .. 8
Figure 4: FREVO Architecture .. 9
Figure 5: High-level states of the CPSs in the Search and Rescue scenario. .. 13
Figure 6: Average fitness with 10% and 90% percentiles for both fitness functions. ... 16
Figure 7: Average fitness with 10% and 90% percentiles for both fitness functions, varying swarm sizes, 𝒕 = 𝟗𝟗𝟗,
𝒘 = 𝒉 = 𝟑𝟗, and 𝒐 = 𝟏𝟗. .. 17
Figure 8: Maximum fitness reached on average for varying environment size 𝒘 = 𝒉. .. 18
Figure 9: Generations to reach 90% of max. fitness for varying environment size 𝒘 = 𝒉. ... 18
Figure 10: Maximum fitness reached on average for varying swarm size 𝒏. .. 18
Figure 11: Generations to reach 90% of max. fitness for varying swarm size 𝒏. ... 18
Figure 12: Maximum fitness reached on average for varying obstacle percentage 𝒐. ... 18
Figure 13: Generations to reach 90% of max. fitness for varying obstacle percentage 𝒐. .. 18

List of tables

Table 1: Parameter settings for evolutionary optimization .. 15
Table 2: Convergence of average fitness for different functions ... 16

Deliverable nr.
Deliverable Title

Version

D6.3
Initial CPS System Design Optimization and Fitness Function Design Guidelines
1.0 - 30/06/2018

Page 21 of 21

References

[1] Schranz, Melanie, Alessandra Bagnato, Etienne Brosse, and Wilfried Elmenreich. "Modelling a CPS Swarm
System: A Simple Case Study." (2018).

[2] Schranz, Melanie, Wilfried Elmenreich, and Micha Rappaport. “Designing Cyber-Physical Systems with
Evolutionary Algorithms.” In Cyber-Physical Laboratories in Engineering and Science Education, pp. 111-135.
Springer (2018).

[3] Bagnato, Alessandra, Regina Krisztina Bíró, Dario Bonino, Claudio Pastrone, Wilfried Elmenreich, René
Reiners, Melanie Schranz, and Edin Arnautovic. "Designing Swarms of Cyber-Physical Systems: the H2020
CPSwarm Project." In Proceedings of the Computing Frontiers Conference, pp. ACM, 2017.

[4] Crespi, Valentino, Aram Galstyan, and Kristina Lerman. "Top-down vs bottom-up methodologies in multi-
agent system design." Autonomous Robots 24, no. 3 (2008): 303-313.

[5] Fehérvári, István, and Wilfried Elmenreich. "Evolving neural network controllers for a team of self-
organizing robots." Journal of Robotics 2010 (2010).

[6] Rappaport, Micha, Melanie Schranz, Davide Conzon, Enrico Ferrera, Midhat Jdeed, and Wilfried
Elmenreich. "Distributed Simulation for Evolutionary Design of Swarms of Cyber-Physical Systems."

[7] Fehérvári, István, and Wilfried Elmenreich. "Evolution as a tool to design self-organizing systems."
In International Workshop on Self-Organizing Systems, pp. 139-144. Springer, Berlin, Heidelberg, 2013.

[8] Sobe, Anita, István Fehérvári, and Wilfried Elmenreich. "FREVO: A tool for evolving and evaluating self-
organizing systems." In Self-Adaptive and Self-Organizing Systems Workshops (SASOW), 2012 IEEE Sixth
International Conference on, pp. 105-110. IEEE, 2012.

[9] Floreano, Dario, and Joseba Urzelai. "Evolutionary robots with on-line self-organization and behavioral
fitness." Neural Networks 13, no. 4-5 (2000): 431-443.

[10] Fehervari. I. "On Evolving Self-organizing Technical System". PhD thesis, Alpen-Adria-Universität
Klagenfurt.(2013).

[11] Lockett, Alan J. 2015. Insights From Adversarial Fitness Functions. In Proceedings of the 2015 ACM
Conference on Foundations of Genetic Algorithms XIII (FOGA '15). ACM, New York, NY, USA, 25-39.
DOI=http://dx.doi.org/10.1145/2725494.2725501

	Document history
	Internal Review History
	Table of contents
	1 Executive summary
	2 Introduction
	2.1 Scope
	2.2 Document organization
	2.3 Related documents
	2.3.1

	3 CPS design optimization (KLU)
	3.1 Designing swarms of Cyber-Physical Systems (CPSs)
	3.2 Evolutionary optimization
	3.3 FREVO as an optimization tool

	4 Fitness function design
	4.1 Main properties
	4.2 Fitness function design guidelines
	4.3 Fitness function design in the CPSwarm Workbench

	5 Case study on the Search and Rescue Scenario
	5.1 An example Search and Rescue scenario (simulated environment)
	5.2 Coverage with a Swarm of Drones
	5.3 Fitness Function Comparison

	6 Conclusion
	Acronyms
	List of figures
	List of tables
	References

