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1 Executive summary 

Deliverable D6.3 - Initial CPS System Design Optimization and Fitness Function Design Guidelines describes 
the optimization of CPSs using heuristic search approaches and methods for assessing their performance. 
Special emphasis is given to the development of fitness functions that guide the optimization process. First, 
this deliverable presents a review of typical optimization methods and evolutionary optimization. Following 
this, it outlines existing approaches for designing fitness functions and highlights the main challenges. It then 
considers how this process can be streamlined using the CPSwarm Workbench. Finally, a case study on the 
Search and Rescue (SAR) scenario is introduced to examine the effectiveness of the technique.  
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2 Introduction  

2.1 Scope 

This deliverable considers the design of optimal swarms of Cyber Physical Systems (CPSs) and the 
corresponding fitness function used in the optimization process and how this can be accomplished using the 
CPSwarm Workbench. This deliverable does not cover the implementation of the interface between the 
simulation and optimization environments, such as FREVO and external simulators, in the CPSwarm 
Workbench. This interface will be covered in deliverable D6.5 ‘Initial integration of external simulators’. 

2.2 Document organization 

The rest of this deliverable is structured as follows. First, it presents a review of optimization techniques for 
swarms of Cyber-Physical Systems focusing on evolutionary approaches. Then, FREVO - an evolutionary 
optimization tool - is introduced together with the main steps for optimizing the design of swarms of Cyber-
Physical Systems. Following this, the deliverable presents an outline of the fitness functions which guide the 
optimization process together with the steps to design them in the CPSwarm Workbench. Finally, a case 
study on the Search and Rescue scenario is presented which addresses the effect of fitness function design 
on the performance of swarms of Cyber-Physical Systems. 

2.3 Related documents 

ID Title Reference Version Date 

[D3.1] Initial System Architecture & Design Specification D3.1 1.0 M8 

[D6.1] Initial Simulation Environment D6.1 1.0 M9 

[D5.2] Initial CPSwarm Modelling Tool  D5.2 1.0 M9 

[D5.1] CPSwarm Modelling Language Specification  D5.1 1.0 M12 

D3.2 Reference to this deliverable is made in this document    

D2.1 Reference to this deliverable is made in this document    

D2.2 Reference to this deliverable is made in this document    

D4.5 Reference to this deliverable is made in this document    

D6.5 Reference to this deliverable is made in this document     
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3 CPS design optimization (KLU) 

3.1 Designing swarms of Cyber-Physical Systems (CPSs) 

The behaviour and the interactions among CPS swarm members remain a complex topic especially in 
environments where dynamic interactions occur. In particular, it is often difficult to derive the requirements 
for an individual member within a swarm from the desired global behaviour [1]. Individual theories allow 
formal descriptions of different aspects of CPS design. Those theories comprise physical, technical, and 
organizational perspectives at different levels of detail. As shown with a conceptual map in Figure 1, 
considering even only a subset of topics surrounding the design of CPSs leads to a tremendous increase in 
complexity. Although this list is far from complete, the need for design and deployment methodologies for 
CPSs is clearly visible [2]. 
 

 
Figure 1: The complexity of designing CPSs 

As outlined in [3], the CPSwarm project provides a toolset for the CPS design process (see Figure 2). Initially, 
a Modelling Library - consisting of formal representations of CPS subsystems, CPS base functions, security 
recipes, behaviour routines, swarm and self-organization algorithms, and human-to-CPS interaction patterns 
- is constructed as a cornerstone upon which the project is founded. Designing a CPS with this approach 
assumes that the initial problem definition is known and properly defined during the modelling phase. Then, 
once the conditions for a CPS are set, the system emerges over iterations though optimization based on 
simulation. In each iteration, the simulation results are validated against the acceptance criteria and restricted 
by a defined fitness function. Once the design and the engineering of the algorithms for the CPSs are 
complete, the final stage is to start the deployment by automatically transforming the generated code to 
hardware specific requirements. 
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Figure 2: The CPSwarm high-level architecture and concept of designing swarm of CPSs 

 
CPS designs may be optimized using several swarm intelligence algorithms such as ant colony, fish swarm 
and particle swarm optimization. On the other hand, evolutionary optimization can be used for designs which 
require an optimum solution in an uncertain environment. The CPSwarm project supports evolutionary 
optimization by directly integrating FREVO into the CPSwarm Workbench, see Section 3.3.  
 
3.2 Evolutionary optimization 

Designing swarms of CPSs poses two main challenges. First, selecting the hardware that best suits the 
requirements of the swarm, and second, designing the control algorithm defining the behaviour of the 
individual swarm agents. Approaches for designing the local controllers of a swarm of CPSs, or more 
generally self-organizing systems, can be categorized into two groups: hierarchical top-down designs 
starting from the desired global behaviour of the swarm and bottom-up designs based on defining the 
swarm agents and observing the resulting global behaviour [4]. The design using either approach is still a 
difficult process as neither can predict the resulting swarm behaviour based on the complex interactions 
between the agents [5]. This is especially true in dynamic environments. Evolutionary methods can be used to 
tackle such design challenges. 
 
Designing a swarm of CPSs by using evolution is mostly an automatic design method that creates an 
intended swarm behaviour as a result of a bottom up process starting from interactions between very small 
components. The process gradually modifies potential solutions until a satisfying result is achieved. Such an 
evolutionary design approach is based on evolutionary computation techniques and can be done either on 
individual or on a swarm level. 
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Typically, the process of evolving a behaviour starts with the generation of a random population of individual 
behaviours. Each of these individual swarm-level behaviours is evaluated through simulation and ranked by 
computing a fitness function. Nevertheless, designing by evolution poses several challenges, including no 
guaranteed, predictable convergence, complex data structures and the high costs of evolutionary 
computation itself. 
 
Furthermore, while designing a swarm of CPSs, a solution refers to a control algorithm of individual agents 
that is gradually improved during the optimization process. As experiments with real hardware require an 
extensive amount of time, such methods typically employ accurate and fast simulations to evaluate the 
performance of candidate solutions in the evolutionary process. The evaluation of algorithms in evolutionary 
optimization can be easily executed in parallel, which is for example supported in the FRamework for 
EVOlutionary design (FREVO), by using multiple cores on the same machine or by distributing the 
evolutionary optimization with a client-server protocol [6]. 
 
In summary, designing by evolution can be used to tackle challenges such as scalability and generality, as 
well as adaptive self-organization. Neither of these two issues is easy to handle, especially in changing 
environments and with dynamic interactions among individual agents of a system or a swarm. According to 
Fehervari and Elmenreich [7], there are six basic tasks related to evolution which designers must face while 
constructing a system model (Figure 3): 

 
Figure 3: Evolutionary design methodology 

 
The problem or task description gives a highly abstracted vision of the problem. This includes constraints and 
the desired objectives for such a problem. 
The simulation setup transfers the problem description into an abstracted problem model.  
The interaction interface defines the interactions among agents and their interactions with the environment.  
The evolvable decision unit represents the agent controller and is responsible for achieving the desired 
objectives, i.e., the global behaviour of a swarm to achieve a common goal.  
The search algorithm performs the optimization using evolutionary algorithms by applying the results from 
the above steps.  
The fitness function represents the quality of the optimization result in a numerical way. It is highly 
dependent on the problem description.  
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3.3 FREVO as an optimization tool  

FREVO is an open-source framework for evolutionary design or optimization tasks. According to the 
CPSwarm Workbench design, presented in D5.2, FREVO is integrated directly into the CPSwarm Workbench 
as an optimization tool and receives a complete set of modelling details for a problem from the Modelling 
Tool.  
 
FREVO automates the problem setup phase, makes it straightforward to define local intelligence and 
interactions, and performs a search for best solutions that fit with genetic algorithms. Basically, there are 
many evolutionary and representation methods in FREVO, documented in [8], such as NNGA classic and 
CEA2D, which are genetic algorithms capable of evolving any kind of representation. 
 
To develop a solution, FREVO needs an input consisting of several components as illustrated in Figure 4. First, 
it is necessary to define the problem where the evaluation context of the agent must be implemented. 
Second, a controller representation should be selected that describes the structure of a possible solution. 
Third, the optimization method must be selected to optimize the chosen controller representation to 
maximize the fitness returned from the problem definition. Finally, the ranking module is configured to 
evaluate all agents in a problem and return a ranking of the candidates based on their fitness. 

 
Figure 4: FREVO Architecture 
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4 Fitness function design  

A fitness function assesses the behaviour of a swarm of CPSs: The best performance of the design 
optimization can be achieved by maximizing that fitness function. In literature, it has many names, such as 
fitness function, cost function, or utility function. Basically, it is a numerical representation that guides an 
optimization algorithm to find the best solution and it can be also a result of a continuous monitoring of 
mission parameters during a simulation run. It is highly dependent on the problem in question and thus 
there is no straightforward way or rule to be followed while designing a fitness function. It is a critical part of 
an optimization process as its effectiveness is directly related to the effectiveness of this function. For 
example, in the SAR scenario, see Section 5, a fitness function can be defined based on the search time or 
success probability. 

4.1 Main properties 

A fitness function that is designed to reward a desired behaviour of swarm of CPSs is highly problem-
dependent. Nevertheless, many studies in the field of evolutionary optimization have considered generic 
methods for fitness function design. In general, these methods may be categorized into a three-dimensional 
fitness space [9, 10]:   
 

1- Functional vs. behavioural: A functional fitness is based on components that directly measure the 
way in which the system functions. A behavioural one rewards the system for displaying a given 
behaviour.  

2- Global vs. local: Global fitness rewards the system based on information that is available to an 
external observer, while the local one is restricted to information available to a single component.  

3- Explicit vs. implicit: An explicit function rewards the way in which a certain goal is achieved, while 
implicit fitness is focused on how much the goal is reached (e.g. a distance). Implicit functions are 
also extensively used in search algorithms operating in the behavioural space. 

 
4.2 Fitness function design guidelines 

In general, the applicability and performance of a fitness function depends on the employed optimizer, thus 
there are no universally suitable fitness functions [11]. However, in the scope of the CPSwarm Workbench, we 
have identified the following guidelines for defining working fitness functions: 
 
Defining scope and modelling sub-problems for complex goals: As mentioned above, a fitness function 
for a problem is directly related to the specifications for that problem. Nevertheless, a good start for 
designing an effective fitness function is to define the specifications for a given problem. Moreover, if an 
objective proves to be too difficult for a system, it might help to decompose it into simpler sub-objectives 
with lower utility values, for example, to evolve robots to play soccer it is good to reward players for kicking 
the ball since it directly correlates to the number of goals and consequently to the fitness of the solution [10]. 
 
Topology of fitness landscape: In general, adversary fitness functions [11], fitness functions with a large 
stochastic component (noise) and fitness functions with local cost minima can affect the optimization time 
and quality of optimization outcome. While the fitness is initially derived by the problem description, a 
refinement of the fitness function towards a "smooth topology" can significantly improve the result. 
Furthermore, the search space can be reduced by assigning high penalties towards unwanted behaviours (an 
example is a robot car that should go forward and orient itself, in this case, going backward could be 
excluded as behaviour). However, keep in mind that excluding certain behaviours might accidently cut off 
solutions which are not obvious but have superior performance in the end. 
 
Combined fitness functions: In many cases the fitness function is comprised of orthogonal goals, for 
example, a robot swarm could be required to stay together, while having a second goal to move forward as a 
swarm. Typically, these goals can be easily expressed as separate fitness functions but not easily into a single 
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combined one. Some optimization algorithms can perform a multi-dimensional search which yields results in 
form of a set of non-dominated solutions. After all, this requires a selection based on a combined fitness 
before deployment and not all optimization algorithms in CPSwarm support this approach. Therefore, fitness 
functions are often described as a weighted sum of criteria, which shifts the problem to defining proper 
weights. While this ultimately depends on initial requirements, a quick guideline can be provided to 
normalize criteria based on their measured variance in order to get a set of equally matched criteria. 
 
Computational effort to derive the fitness value: In some cases where the fitness function is derived from 
a simulation of the target system, the computational effort for computing the fitness function can become 
the defining part of the overall evolutionary algorithm. In some cases, typically early in the optimization 
process, a simpler fitness calculation which is considerably faster could significantly speed up the process. For 
the example where a fitness function is derived by a simulation this could be done with fewer repetitions of 
simulations (e.g. averaging the results of a few simulations in the beginning and increasing this amount at 
later generations, where accuracy is needed), shorter simulation time (adjusting simulated time depending on 
generations) or reduced accuracy (simulating with larger time steps/lower resolution in early generations). 
 

4.3 Fitness function design in the CPSwarm Workbench 

As indicated in Section 4.2, the design of the fitness function must follow the definition of the problem. For 
this reason, during the modelling phase, the CPSwarm Workbench allows a fitness function to be associated 
with a behaviour, after that the same Modelling Tool (i.e. Modelio1) has been used to define the state 
machine to address the problem. Furthermore, as shown in the SAR scenario in the next section, the state 
machine approach may be used to divide the complex scenario into several simpler states (e.g. the SAR 
scenario is subdivided into Coverage, Tracking, and Find Exit states) and then a separate fitness function can 
be designed for each state. 
 
As indicated in the guidelines for designing the fitness function, the CPSwarm Workbench allows high 
penalties to be assigned to undesirable behaviours to reduce the time required to find the optimal result. 
Furthermore, it allows the optimization of the algorithm to be executed in two different steps: Firstly, the user 
can design a simple fitness function to be applied on a large set of candidates. Then, leveraging the initial 
results, a more complex fitness function can be applied to a restricted set of candidates, obtaining fine 
grained results. Typically, the fitness function is designed in the Modelling Tool, which allows the fitness 
function to be described using mathematical expressions, such as those presented in Section 5.3. When the 
fitness function has been modelled, the Modelling Tool uses this model to generate the code that will then 
be used in the rest of the Workbench. 
The model of the fitness function is also stored in the Modelling Library, allowing it to be reused in different 
contexts. Furthermore, the library is pre-loaded with a set of default fitness functions associated with the 
behaviours designed for the proposed scenarios. For example, in the SAR scenario, the library could be 
preloaded with default fitness functions for all the possible states: 
 

• To evaluate the Coverage algorithm, a fixed number n of checkpoints could be distributed over the 
area to be patrolled. In this case, the fitness function could count the number of checkpoints a drone 
flies within a distance d within a time interval t (other examples are presented in Section 5.1). 

• To evaluate the Tracking algorithm, the fitness function can consider the proportion of time in which 
the drone is within distance d of the objective. 

• For the Find Exit state, the value to be evaluated can be the average time required to escort all 
targets to an exit within a maximum allowed time t. 
 

                                                
1 https://www.modelio.org/ 
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It is important to note that all the fitness functions - described through mathematical expressions - are 
reusable in different contexts by referencing parameters/properties of the model. For the example described 
in Section 5.1, during the modelling phase in Modelio, the user can decide what fitness function to apply to 
the Coverage state optimization, for example the Coverage function, which measures the number of visited 
fields within a given timeout. After selecting this fitness function, the designer can set its parameters (i.e. the 
value of the timeout, the size of the arena or the grid map). 
 
The CPSwarm Workbench has a distributed architecture for the Simulation and Optimization Environment 
(see deliverable D3.2 – Updated system architecture & design specification, for the description of the 
different components), with several simulation engines distributed on different machines, each wrapped by a 
Simulation Manager. The distributed simulators are coordinated by a centralized component, called the 
Simulation and Optimization Orchestrator (SOO), which handles their interaction with the Optimization Tool 
(i.e. FREVO). 
When the user has finished designing the fitness function and setting the desired values for the parameters, 
Modelio generates the related code, which is passed to the SOO through the Launcher. 
 
The SOO chooses appropriate simulator instances for the optimization process and sends the models and the 
code of the fitness function to the related Simulation Managers. The SOO then instructs the Optimization 
Tool to start the optimization process and to use the configured simulation engines for the simulation. 
Following this, the Optimization Tool sends the candidates to be evaluated to the Simulation Managers. 
These execute the simulations and use the fitness function code to evaluate the results of each simulation 
and to calculate the fitness score of the candidate to be returned to the Optimization Tool, which uses these 
values to evolve the algorithm. 
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5 Case study on the Search and Rescue Scenario  

5.1 An example Search and Rescue scenario (simulated environment)  

A prominent example for the demonstration of swarms of CPSs is the SAR scenario. In such a scenario, 
multiple agents are deployed in an a-priori unknown environment to search for victims (referred to as 
targets) and to support their rescue. 
 
In the CPSwarm project, the SAR scenario is one of the main vision scenarios used for demonstrating the 
Workbench (see deliverables D2.1 and D2.2). In this scenario, a swarm of drones searches a given area for 
targets and tracks found targets, supported by a swarm of ground rovers that guides the found targets to a 
safe place. This swarm behaviour may be formalized using state machines, as shown in Figure 5. For more 
details refer to future deliverable D4.5. 
 

 
Figure 5: High-level states of the CPSs in the Search and Rescue scenario. 

 
For each state of this state machine, different algorithms can be employed. These can be either bio-inspired 
swarm intelligence algorithms or algorithms that are evolved with evolutionary optimization. In this case 
study, we choose the coverage state to be evolved for further analysis and examine the influence of different 
fitness functions on the optimization process. 
  

5.2 Coverage with a Swarm of Drones 

For evolutionary optimization, we must complete the six tasks mentioned in Section 3.2. 
1. Task Description 

In the coverage state, multiple drones fly over a given environment to localize the targets. The 
drones work together in a swarm to minimize the time until the targets are found. Ideally, the 
environment is covered completely by the drones while minimizing the overlap between the areas 
covered by each drone. 
 

2. Simulation 
The coverage task is simulated with a given number 𝑛 of drones that can move in discrete time and 
discrete space. The simulation always runs until a given maximum time 𝑡 is reached. The environment 
is a rectangular, two-dimensional grid consisting of 𝑤 horizontal and ℎ vertical cells, yielding an area 
of 𝑤 ⋅ ℎ grid cells. It is assumed that the drones fly in one plane over the environment of interest. 
Cells can either be occupied by a drone, free, or occupied by an obstacle. Obstacles are placed 
randomly and occupy a given percentage 𝑜 of the environment. In each time step a drone can move 
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to one of the four neighbouring fields if they are free. For a grid cell to be covered, at least one 
drone must visit that cell during the simulation. 
 

3. Interaction Interface 
Each drone can sense whether neighbouring cells are occupied and differentiate between obstacles 
and drones. Obstacles are detected in the von Neumann neighbourhood consisting of the four 
closest cells. Drones are detected in the Moore neighbourhood consisting of the eight closest cells. 
This results in 12 sensor values as input to the decision unit. Each drone can move to one of the cells 
in the von Neumann neighbourhood. The direction to move in is given as x and y offset. Therefore, 
there are two actuator commands returned by the decision unit. 
 

4. Decision Unit 
The decision unit is a time-discrete, recurrent artificial neural network (ANN) with one hidden layer, 
resulting in three layers total. The ANN is fully meshed meaning every neuron is connected to every 
other neuron and itself. 
 

5. Search Algorithm 
The search algorithm is a neural network genetic algorithm (NNGA) that supports multiple 
populations and different selection schemes while trying to maximize the population diversity. The 
evolutionary search is performed for 100 generations where each generation has a population of 200 
candidate solutions. 
 

6. Fitness Function 
The fitness function measures the performance of the swarm. Regarding the coverage task, there are 
many parameters that can be used to construct a fitness function. A selection of some parameters is 
given below. 
 
• Swarm size 𝑛. 
• Number of time steps 𝑡 in the simulation. 
• Size of the environment: Width 𝑤, height ℎ. 
• Grid map of the environment: 

𝑀 = �𝑚𝑥,𝑦�𝑥 ∈ [0,𝑤),𝑦 ∈ [0, ℎ)� 

𝑚𝑥,𝑦 = �0, if cell (𝑥,𝑦)is free
1, if cell(𝑥,𝑦)is occupied 

 
• Number of visits to each cell of the grid map: 

𝑉 = �𝑣𝑥,𝑦�𝑥 ∈ [0,𝑤),𝑦 ∈ [0, ℎ)� 
𝑣𝑥,𝑦 ∈ [0,𝑛 × 𝑡] 

 
All the parameters require global observation of the swarm. They can be used to implicitly measure 
the behaviour of the swarm, see Section 4.1. Using these parameters, different fitness functions can 
be constructed: 
 
• Coverage: Percentage of visited fields after given timeout 
• Redundancy: Number of times that the fields have been visited 
• Actuality: Maximum time between two visits of a field 
• Duration: Time until everything is covered 
• Activity: Percentage of agents working simultaneously 
• Distribution: Spatial distribution of agents 
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5.3 Fitness Function Comparison 

Two of the fitness functions mentioned in the previous section have been implemented and evaluated. These 
are the coverage function, called 𝐶 and the redundancy function, called 𝑅. They are formalized in the 
following way. 
 

𝐶 =  
∑ ∑ �

𝑉𝑥,𝑦
𝑛 ⋅ 𝑡�

ℎ
𝑦=0

𝑤
𝑥=0

𝑤 ⋅ ℎ − ∑ ∑ 𝑀𝑥,𝑦
ℎ
𝑦=0

𝑤
𝑥=0

 

 

𝑅 =   
∑ ∑ �

𝑉𝑥,𝑦
𝑛 ∙ 𝑡� ⋅ �1 −

𝑉𝑥,𝑦 − 1
𝑛 ⋅ 𝑡 �ℎ

𝑦=0
𝑤
𝑥=0

𝑤 ⋅ ℎ − ∑ ∑ 𝑀𝑥,𝑦
ℎ
𝑦=0

𝑤
𝑥=0

 

 
To compare the fitness functions quantitatively, the following performance metrics are proposed: 
 

• Complexity: 
◦ How computationally complex is it to compute the fitness? 

• Convergence: 
◦ Does the fitness converge? 
◦ What is the maximum fitness reached? 
◦ How fast does the fitness converge? 

• Sensitivity: 
◦ How do parameter changes influence the convergence? 

 
Both fitness functions have the same complexity 

𝒪(𝑤 × ℎ) 
which is due to the fact that both iterate the environment grid map and the visited grid once. Therefore, no 
advantage can be seen for either fitness function from the complexity analysis. 
 
The optimization process is executed for a number of different parameter settings. All possible parameter 
values are given in Table 1. 
. Simulations were carried out for all parameter permutations except simulation time and environment size 
that were coupled such that 𝑡 = 𝑤2 = ℎ2 holds at all time. This yields a total of 300 different setups. To 
accurately measure the fitness of the simulations with both fitness functions, the optimization for each setup 
is repeated 25 times with varying random number generator seed. This results in a total of 7500 
optimizations.  

Table 1: Parameter settings for evolutionary optimization 

Fitness function 𝒇 𝐶, 𝑅 

Simulation time 𝒕 100, 400, 900, 1600, 2500 

Environment size 𝒘 = 𝒉 10, 20, 30, 40, 50 

Swarm size 𝒏 1, 2, 4, 8, 16 

Obstacle percentage 𝒐 0, 5, 10, 15, 20, 25 

 
The convergence behaviour of each fitness function during optimization is shown in Figure 6. Both converge 
with only minor differences. The coverage function is on average 0.9 percentage points better than the 
redundancy function. This is due to the fact that both functions compute coverage similarly but the 
redundancy function is penalized for redundant visits. 
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Figure 6: Average fitness with 10% and 90% percentiles for both fitness functions. 

 
The convergence is quantified in Table 2, indicating what value the fitness converges to and how fast. 
 

Table 2: Convergence of average fitness for different functions 

 Coverage Redundancy 

Maximum 
fitness 75.83 % 74.90 % 

Generations 
to reach 90% 
of maximum 
fitness 

23 23 

 
As shown above, the coverage function has a slight advantage over the redundancy function. 
 
A sensitivity analysis was performed to determine the robustness of the fitness functions to parameter 
changes. Figure 7 shows an example of the two fitness functions for a different parameter setup. It can be 
seen that the setup affects both fitness functions differently. 
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Figure 7: Average fitness with 10% and 90% percentiles for both fitness functions, varying swarm sizes, 𝒕 = 𝟗𝟗𝟗, 

𝒘 = 𝒉 = 𝟑𝟗, and 𝒐 = 𝟏𝟗. 

 
Figures 8 to 13 show the influence of the parameters on the maximum fitness and on the speed of 
convergence, respectively. In both cases, the fitness of the optimization runs is averaged over the remaining 
parameters that are not mentioned. It can be seen that both fitness functions react similarly to parameter 
changes due to the fact that both functions are computed similarly. Nonetheless, in most cases the coverage 
function slightly outperforms the redundancy function. 
 
Looking at the parameters swarm size 𝑛 (Figure 10 and Figure 11) and obstacle percentage 𝑜 (Figure 12 and 
Figure 13), the results show an increased performance for larger swarms and less obstacles. This can be 
explained trivially by the fact that with larger swarms more parallelization happens and with fewer obstacles 
the swarm members can move more freely. It can also be seen from Figure 13 that without any obstacles the 
fitness converges very fast and the evolutionary process does not need to be that long. It must be noted that 
the swarm size is still low enough to not create congestions in the environment. 
 
A very interesting trend can be seen in Figure 9. The convergence speed of the optimization decreases with 
increasing environment sizes but only up to a certain size. After that, the optimization converges faster again. 
This suggests that small environments have a negative effect on the evolutionary optimization and should be 
avoided for the chosen fitness functions. 
 
To conclude this comparison, we propose to use the coverage fitness function as it usually outperforms the 
redundancy fitness function while being simpler to compute. 
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Figure 8: Maximum fitness reached on average 

for varying environment size 𝒘 = 𝒉. 

 
Figure 9: Generations to reach 90% of max. fitness 

for varying environment size 𝒘 = 𝒉. 

 
Figure 10: Maximum fitness reached on average 

for varying swarm size 𝒏. 

 
Figure 11: Generations to reach 90% of max. fitness 

for varying swarm size 𝒏. 

 
Figure 12: Maximum fitness reached on average 

for varying obstacle percentage 𝒐. 

 
Figure 13: Generations to reach 90% of max. fitness 

for varying obstacle percentage 𝒐. 

 
  

0 0.2 0.4 0.6 0.8 1

10

20

30

40

50

Fitness 

En
vi

ro
nm

en
t S

iz
e 

Coverage Redundancy

0 10 20 30 40

10

20

30

40

50

Generations 

En
vi

ro
nm

en
t S

iz
e 

Coverage Redundancy

0 0.2 0.4 0.6 0.8 1

1

2

4

8

16

Fitness 

Sw
ar

m
 S

iz
e 

Coverage Redundancy

0 10 20 30 40

1

2

4

8

16

Generations 

Sw
ar

m
 S

iz
e 

Coverage Redundancy

0 0.2 0.4 0.6 0.8 1

0
5

10
15
20
25

Fitness 

O
bs

ta
cl

e 
Pe

rc
en

ta
ge

 

Coverage Redundancy

0 10 20 30 40

0
5

10
15
20
25

Generations 

O
bs

ta
cl

e 
Pe

rc
en

ta
ge

 

Coverage Redundancy



 

Deliverable nr. 
Deliverable Title 

Version 

D6.3 
Initial CPS System Design Optimization and Fitness Function Design Guidelines 
1.0 - 30/06/2018 

Page 19 of 21 

 

6 Conclusion  

This deliverable describes the main steps for a swarm of CPSs design optimization using an evolutionary 
approach and provides initial guidelines for designing a fitness function that rewards desirable behaviour of a 
swarm of CPSs. The document proposes that the fitness function design for a system is highly dependent on 
the system specifications. Therefore, defining the specifications of a system or a problem will give hints for 
the design of an effective fitness function. The comparison of the effect of the different fitness function, for 
the coverage state using a swarm of drones, shows interesting results. For example, up to a certain size of the 
environment, the convergence speed of the optimization decreases with larger environments. 
 
Future results and the progress of CPSwarm project with respect to evolution and fitness function design will 
be addressed in the Final CPS System design optimization and Fitness function design guidelines report. 
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Acronyms 

 
Acronym Explanation 

CPSs  Cyber-Physical Systems 

FREVO FRamework for EVOlutionary design 

SOEnvO Simulation and Optimization Environment Orchestrator 

SAR Search and Rescue 

ANN Artificial Neural Network  

NNGA Neural Network Genetic Algorithm 
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