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1 Executive Summary 

This document is a deliverable of the CPSwarm project, funded by the European Commission’s Directorate-

General for Research and Innovation (DG RTD), under the Horizon 2020 Research and innovation Program 

(H2020). It is the final version of a series of deliverables (D3.1-D3.3), documenting the final architecture design 

of the CPSwarm system. The architecture design documented in this deliverable is the final result of multiple 

discussion and design iterations within the consortium. It serves as the high-level blueprint for the development 

of individual software components within the project. 

 

The final architecture design is heavily based on the second phase documented in D3.2 - Updated System 

Architecture Analysis and Design Specification. To enhance the readability, content from D3.2 is reused in this 

document to make it a complete and standalone document. The final architecture is then documented with 

similar methodology used in previous series of deliverables, complying with the ISO/IEC/IEEE 42010 System 

and software engineering (IEEE, 2011) standard. Relevant viewpoints of the system are presented as 

documentation for different architectural aspects of the CPSwarm system. 

 

Besides the main functional design, cross-cutting aspects such as security, safety and scalability are also 

important topics in architecture design. The consortium has realized that these aspects must be addressed not 

only in the implementation of single component, but also on a system level. As a result, the consortium’s 

consideration regarding these aspects in separate sections at the end of this document. 
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2 Introduction 

The CPSwarm architecture specifies the structure of a system enabling model-based realization of 

collaborative, autonomous CPSs. It consists of several cohesive, standalone components addressing different 

aspects of swarm modelling, simulation, optimization, code generation, deployment, runtime, and monitoring.  

 

This document presents the architecture according to ISO/IEC/IEEE 42010:2011 (IEEE, 2011), an international 

standard for architecture descriptions of systems and software. The document focuses on functional view, 

information view, and deployment view presented in chapters 3.1, 3.2, and 3.3 respectively. 

 

In the second part of the document, design consideration regarding important cross-cutting aspects, such as 

security, safety and scalability are elaborated. These aspects require efforts not only for the implementation of 

a single component, but also on the system level. As a result, this document briefly discusses them in the scope 

of system architecture. 

 

2.1 Related documents 

ID Title Reference Version Date 

D2.1 Initial Vision Scenarios and Use Case Definition D2.1 1.0 M4 

D3.1 Initial System Architecture & Design Specification D3.1 1.0 M6 

D3.2 Updated System Architecture & Design Specification D3.2 1.0 M18 

D5.1 CPSwarm Modelling Language Specification D5.1 1.0 M12 

D5.2 Initial CPSwarm Modelling Tool D5.2 1.0 M9 

D6.1 Initial Simulation Environment D6.1 1.0 M9 

D6.2 Final Simulation Environment D6.2 1.0 M28 

D6.3 
Initial CPS System Design Optimization and Fitness 

Function Design Guideline 
D6.3 1.0 M18 

D6.4 
Final CPS System Design Optimization and Fitness 

Function Design Guideline 
D6.4 1.0 M30 

D6.5 Initial Integration of External Simulators D6.5 1.0 M18 

D6.6 Updated Integration of External Simulators D6.6 1.0 M28 

D7.1 Initial CPSwarm Abstraction Library D7.1 1.0 M18 

D7.3 Initial Bulk Deployment Tool D7.3 1.0 M21 
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3 Final Architecture Design 

In this chapter, the final architecture design is documented in detail. In accordance to ISO/IEC/IEEE 42010:2011 

architecture description, this chapter describes the functional, information and deployment aspects of the final 

architecture. 

 

3.1 Functional View 

Figure 1 shows a functional view of the final CPSwarm architecture, which outlines the boundaries between 

components as well as their relationships. The following sub-chapters focus on explaining the functionality of 

each component. The arrows indicate the flow of information between components, which are described in 

Section 3.2.  

 

 

Figure 1. Final architecture design 

 

3.1.1 Launcher 

One goal of CPSwarm is to build a flexible and extensible swarm design system. To enhance the flexibility of 

the system, the consortium decided to build the system with highly decoupled components instead of 

monolithic software. To ease the difficulty of managing decoupled components, a launcher with a graphical 

user interface (GUI) and backend service is developed to interconnect the different APIs of components. The 

launcher service offers the following functionalities: 

 

 A GUI to launch all components within the Workbench, helping the user to navigate through the CPSwarm 

workflow by selectively enabling/disabling certain steps depending on available files 

 A storage facility to manage a CPSwarm project which contains all data generated and needed for all 

components within the Workbench 

 Orchestration of configurations and input files between components 

 

Figure 2 shows the internal structure of the launcher. As shown in the diagram, the Launcher consists of multiple 

sub-components: the GUI, the Component Launcher and the Project File Manager.  
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Figure 2. CPSwarm Launcher internal structure 

 

 

The GUI is the interface which the user interacts with. Figure 3 shows a screenshot of a prototype design of the 

GUI. On the left side, the Launcher includes tabs which represent different steps within the workflow of realizing 

a swarm system. Once a tab is selected, the detailed content of a specific tab will be shown on the right side. 

In the detail view of each tab, the user can specify the input files as well as the launching parameters for the 

component to be launched. For example, in the “Swarm Modelling” tab (shown in Figure 3), the user can specify 

the modelling files as the input for the Simulation Orchestrator. Selecting the “Launch Simulation Orchestrator” 

button starts the target Simulation Orchestrator such that the user can proceed to work with the newly started 

tool.  
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Figure 3. Screenshot of the CPSwarm Launcher prototype 

The File Manager manages CPSwarm related project files. As described in the following chapters, a large variety 

of files are passed between different components within a single project. Managing these files manually would 

be a tedious and error-prone task. Besides, it is difficult to share project files produced by multiple applications 

among different developers, which is often the case when multiple users are involved in a complete swarm 

design. The Launcher tackles this by providing a structured directory model. For every swarm design, a 

CPSwarm project is created in the Launcher. The project provides a pre-defined file structure to store the files 

generated by different components. When the Launcher starts a specific component, the path of the project is 

also passed into that component. As a result, the components can read required files from and place generated 

files into the project without manual interference. Moreover, the Launcher detects generated files and 

automatically enables/disables available functions. This helps users follow a correct set of operations without 

missing mandatory steps. Lastly, the uniform file structure allows project collaboration using off-the-shelf file 

sharing and version control systems.  

 

The CPSwarm Launcher will be thoroughly described in D3.6 – Final CPSwarm Workbench and associated tools. 

 

3.1.2 Modelling Tool 

The Modelling Tool provides the GUI interface for the user to model different aspects of a swarm. Compared 

to previous designs, the Modelling Tool focuses on modelling only and performs a smaller set of tasks. The 

reason for this change was to reduce dependencies on any single component and create a more modular, 

extensible solution. 

 

The Modelling Tool now focuses on modelling swarm behaviour related aspects. Other functionalities, such as 

the modelling of hardware specifications, such as a swarm member’s 3D model, equipped sensors and the 

properties of each sensor (e.g. accuracy, noise, etc.) are out of the scope of the Modelling Tool. Instead, such 
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hardware specifications are expected to be provided by the manufacturers or open source communities. In 

addition, the modelling of environment is now expected to be carried out by third-party tools.  

 

 

Figure 4. Hierarchical illustration of the core tasks of the Modelling Tool 

 

In the final architecture, the following functionalities have been identified as the core tasks of the Modelling 

Tool: 

1) Modelling of the swarm composition 

2) Modelling of behaviour state machines  

3) Mapping of algorithm input and output 

4) Modelling of fitness functions 

 

Before explaining each core task in detail, it is beneficial to have an overview of the relationships between these 

tasks. Figure 4 illustrates such relationships in a hierarchical way. The user will typically start the swarm design 

process by modelling the swarm composition for the mission (marked as 1 in Figure 4). For each of the devices 

in the swarm, the user will model a behaviour state machine (marked as 2 in Figure 4), which serves as the 

backbone for each device’s behaviour in different situations. For a certain state, the user may want to use an 

existing algorithm to control the device in that state. In this case, a mapping between the input/output of the 

algorithm and the input/output of the device’s Abstraction Layer has to be done (marked as 3 in Figure 4). 

Alternatively, the user may decide to use the optimization process to generate a new algorithm for a certain 
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state. In that case, the user will model a fitness function for that state (marked as 4 in Figure 4), which will later 

be used by the Optimization Tool to find the best algorithm candidate. 

 

In the following paragraphs, each core task is presented in detail. 

 

 

Modelling of Swarm Composition 

The first thing a user needs to do when designing a swarm is to determine the composition of the swarm. That 

means, the user needs to model e.g. how many rovers or drones are used in the mission, what their models 

are, and how they communicate and share information with each other. These pieces of information are needed 

during the simulation and optimization phase to simulate the swarm. 

 

Modelling of Behaviour State Machine 

After the composition of the swarm has been defined, the next step would be to model the behaviour for each 

swarm member. In CPSwarm, the consortium has decided to use a finite state machine to represent the high-

level behaviour of a swarm member. Each state within the state machine represents a certain algorithm that 

controls the behaviour of the swarm member in a specific situation. For example, the drones in the search and 

rescue demo may have one state in which they cover the infrastructure to inspect for anomalies, while another 

state may guide trapped victims to the nearest exit. One important task of the Modelling Tool is to provide an 

interface to model such state machines. During this process, the user defines the algorithm to be used in a 

specific state, as well as the trigger conditions between states. According to the use cases, a user may want to 

use a pre-defined algorithm or generate an algorithm using the Optimization Tool for a certain state. Different 

modelling activities have to be carried out based on the chosen algorithm, as outlined in the following 

paragraphs. The modelled state machine is later converted into runnable code by the Code Generator. 

 

Mapping of Algorithm Input and Output 

The user may choose to use a pre-defined algorithm for a certain state (e.g. State 3 in Figure 4). A pre-defined 

algorithm would typically require certain inputs (such as input values of an infrared distance sensor) and 

produces certain output (such as the twist vector for the wheel actuator). In order to use the algorithm on a 

swarm device, the user needs to map the required input of the algorithm to the proper sensor APIs in the 

Abstraction Layer and map the generated output to the actuator APIs in the Abstraction Layer. The Modelling 

Tool should provide a graphical interface for the user to make such a mapping, which is similar to the Algorithm 

Mapping box marked as 3 in Figure 4. 

 

Modelling of Fitness Functions 

Alternatively, user may choose to use the Optimization Tool to generate an optimized algorithm for a certain 

state (e.g. State 2 in Figure 4). In order for the optimization process to work, the user needs to model the so-

called fitness function (marked as 4 in Figure 4). The fitness function is a function which takes some KPIs of a 

simulation as input and outputs a score. The output score indicates how well the algorithm behaves within the 

simulation. The fitness function is needed by the Optimization Tool during optimization phase, so that it can 

use the fitness function to evaluate the performance of each candidate algorithm, hence selecting the best and 

eliminating the worst. 

 

The final specifications of the Modelling Tool will be presented in D5.4 – Final CPSwarm Modelling Tool. 

3.1.3 Modelling Library 

The Modelling Library stores and provides reusable parts of models for the Modelling Tool. It is an archive of 

SysML 1.2 models serialized using the XMI 2.1 standard.   

 

The Modelling Library contains the following types of models: 

 

CPS Hardware Specifications 
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The CPS hardware specifications include information related to the hardware aspects of a specific CPS. For 

example, the 3D model of the CPS, the specifications of its sensors and actuators (such as the accuracy, bias, 

noise). Such information is required to carry out simulations of the CPS. 

 

Environment  

This part of a CPSwarm model represents the field or environment in which the swarm will operate. It describes 

the environment, such as how large it is and what objects exist within it. This is needed to simulate the swarm 

behaviour in different kinds of fields, testing its robustness against possible changes of the external conditions.  

Cost Function 

To evaluate the resulting behaviour of a modelled swarm in a specific environment, one or many criteria related 

to the result must be defined. Such criteria, known as cost functions, are used to optimize the modelled swarm 

according to an environment. A lot of criteria are possible, including time spent, accuracy, security, robustness, 

and power consumption. 

The final design of this component will be described in D4.3 – Final CPS modelling library. 

3.1.4 Behaviour Library 

The Behaviour Library is a collection of software libraries that enable the operation of swarm devices at different 

layers. These libraries are open source and available as public Git repositories. The initial set of libraries are 

being developed as part of CPSwarm will be available on CPSwarm GitHub organization1. The libraries can be 

extended by external contributors via Git forking. An extended library may remain and be used as a standalone 

repository or submitted to the master repository via a Git pull request. Merging external changes into a master 

library is subject to the approval of the library owner. 

 

The Behaviour Library included two set of libraries:   

 

Abstraction Library 

The CPS Abstraction Library includes libraries that implement communication functionalities as well as 

abstraction of heterogeneous hardware and native CPS functionalities. These libraries are the building blocks 

of an Abstraction Layer for a specific CPS device. It is expected that the Abstraction Layer is deployed on target 

devices, before they can interact with other components within the CPSwarm system. Besides the source code 

implementation, the Abstraction Library contains also provide an abstraction description file (ADF), which 

describe the exposed APIs of the Abstraction Layer implementation. For more detailed explanation, please refer 

to chapter 3.1.10. 

 

Swarm Library  

The Swarm Library includes implementations of specific behaviour algorithms that control the CPS in a specific 

state. These algorithms do not require optimization and will be deployed to the swarm device by the 

Deployment Tool. Besides the source code implementation, each swarm algorithm should also provide a so-

called algorithm meta file (AMF) which describes the required inputs and the produced output of the algorithm. 

This piece of information is required by the Modelling Tool to do the mapping between the algorithm 

input/output and the Abstraction Layer input/output APIs. 

 

The Behaviour Library will be described in D4.6 – Final Swarm modelling library and D7.2 – Final CPSwarm 

Abstraction Library. 

 

                                                
1 https://github.com/cpswarm 
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3.1.5 Simulation and Optimization Orchestrator (SOO) 

This component orchestrates the simulation and optimization process. It is the only interface between the 

Simulation and Optimization Environment and the rest of the Workbench. The SOO is part of the distributed 

design for the Simulation and Optimization Environment of the CPSwarm Workbench which has been briefly 

introduced in the deliverable D6.2 - Final Simulation Environment and is an evolution of the one described in 

D6.1 - Initial Simulation Environment. The SOO is the centralized component connected from one side to the 

Launcher and from the other side to the Optimization Tool (OT) and the distributed Simulation Managers (SMs) 

using the eXtensible Messaging and Presence Protocol (XMPP)2. The interaction among the components is 

described in D6.4 - Final CPS system design optimization and Fitness function design guideline. The SOO can 

be used to perform either a simulation of an algorithm or optimization using an evolutionary algorithm. Both 

the SOO and the OT maintain a list of available simulators, so they can choose which of them to use for the 

simulations or optimization processes.  

 

In the case of optimization, the SOO receives models of the CPSs and the environment from the Modelling 

Tool, both described using the SDF format3. Furthermore, it receives an XML file (based on SDF, with some 

extensions) that describes the inputs and outputs of the OT candidate that correspond to the sensors and 

actuators of each swarm member. Finally, it receives the code of the fitness function to be used to evaluate the 

optimized behaviour. When the SOO has chosen the suitable simulators, it sends the models and the candidate 

description to the SMs that manage these simulators. Furthermore, it sends the configuration file to the OT to 

configure the optimization process. Then, a set of XMPP chat messages are exchanged among the components 

(fully described in D6.4). When the optimization is finished, the OT sends the SOO an optimized controller. 

 

In the case of simple simulation, simulators receive the algorithm’s description and simulate the scenario 

typically displaying a GUI, allowing the user to see if the algorithm works properly. The last version of the 

Simulation and Optimization Environment architecture has introduced new scalability and deployment features 

(please refer to D6.2 for full details). In this last release, the SOO can also be used also to deploy the required 

set of SMs in a cluster of distributed machines using Kubernetes4. Using a web interface, the user is able to 

monitor and orchestrate a large set of distributed SMs. The SOO is currently implemented as a Maven-based 

Java application, which incorporates a XMPP client based on the Smack library5. 

3.1.6 Optimization Tool 

The Optimization Tool (OT) optimizes a control algorithm for an agent using a modular approach, where the 

distinct steps of evolutionary design are split into different components (see Figure 5). It starts with a generic 

representation of a control algorithm and searches for a viable solution using a heuristic search algorithm. The 

control algorithm needs to be evolvable, i.e. modifiable by mutation and recombination. An example for such 

a representation is an Artificial Neural Network (ANN). To apply the iterative heuristic search to find an 

optimized configuration of the controller for a CPS, a measure of fitness needs to be defined for a given 

problem scenario. A fourth component takes care of evaluating a pool of possible algorithm candidates and 

provides a ranking for the evolutionary algorithm. 

 

In the CPSwarm context, the result is a controller that implements local interaction rules that lead to the desired 

global behaviour of the system. The controller can be evaluated with the Optimization Simulator by testing it 

in a reference scenario or by performing a statistically significant number of simulations on a given scale of 

parameters under predefined conditions.  

 

                                                
2 https://xmpp.org/ 
3 sdformat.org 
4 https://kubernetes.io/ 
5 https://www.igniterealtime.org/projects/smack/ 
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Figure 5. Components of the Optimization Tool 

 

The OT integrates an XMPP client to communicate with the SOO and the SMs using the set of APIs defined in 

D6.4. It collects the presences of the available Simulation Managers and when it receives a start message from 

the SOO, it chooses the ones to use and communicate directly with them in parallel, sending the candidate 

controllers to be evaluated and receiving back fitness scores calculated using the designed fitness function. 

After it has finished the optimization process, the OT sends the optimized controller back to the SOO. The OT 

implements mechanisms that allow it to recover from failure during the optimization process. 

3.1.7 Simulation Manager 

The Simulation manager (SM) is the software component that wraps the simulation engine. The broker-based 

approach designed for the Simulation and Optimization Environment provides distributed simulation engines, 

each one with one SM to handle it. The SMs use XMPP to communicate both with the SOO and the OT. From 

the SOO, the SM receives the models to be used for the simulation, the description of the inputs and outputs 

of the candidate and the fitness function code. The OT provides the SM with the code of the candidate to be 

evaluated through simulation. The role of the SM is to integrate all the files into the simulation engine (using 

its own format) and to start the simulation. During optimization, the SM uses the fitness function to compute 

the fitness score once the simulation is finished, which is subsequently returned to the OT. 

 

The SM is composed of a set of Maven-based Java applications, namely the generic SM project, which contains 

all the code common to all the managers, and the specific SM for each simulator. The partners are working on 

a refactored version of the SMs, based on the use of the ros-osgi project6 that will be released by the end of 

the project and described in deliverable D6.7 – Final Integration of External Simulators. At the time of writing, 

specific SMs for Gazebo7 and Stage8 have been implemented. The integration of other simulators requires 

further evaluation and is envisioned by the end of the project. SMs can be automatically deployed as Docker 

containers using the SOO. While this option allows the user to rapidly deploy, monitor and orchestrate large 

set of SMs, it is also possible to run a SM by hand to integrate a local external simulator. 

                                                
6 https://github.com/ibcn-cloudlet/rososgi 
7 http://gazebosim.org/ 
8 http://playerstage.sourceforge.net/ 
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3.1.8 Code Generator 

 

Figure 6. Code Generator role in CPSwarm workbench 

One of the main purposes of the CPSwarm Workbench is to provide a framework able to ease and speed up 

the development of new CPS applications through the use of model-based techniques. Against this 

background, one of the most common approaches to go from models to deployable code is automatic code 

generation for different platforms. The main idea behind this kind of approach is to realize a set of software 

components that can be reused to produce different outputs according to the varying input they receive. 

 

In the continuation of tasks 4.3 and 5.3, the consortium has decided to focus on the implementation of swarm 

device behaviour algorithms modelled as Hierarchical Finite State Machines (HFSM). Each state of the state 

machine can be associated with high-level functionality that can be selected from three different sources: 

 

1. The Abstraction Library 

2. An optimized algorithm coming from the Optimization Tool 

3. The Swarm Library which contains different types of swarm algorithms (simple functions or complex 

behaviours), generally handwritten taking inspiration from the biology. 

 

For the first option, the Code Generator will serve as a “glue” between the platform-independent algorithm 

modelled as a state machine and the Abstraction Library which provides a set of APIs to access the basic 

functionalities of the CPS. 

 



 

Deliverable nr. 

Deliverable Title 

Version 

D3.3 

Final System Architecture & Design Specification 

1.0 - 10/07/2019 

Page 15 of 35 

 

In the other two cases, the Code Generator generates a software wrapper to enable the defined algorithm to 

be called by a known interface supported by the CPS runtime environment. The information to generate this 

wrapper can be extracted from the Algorithm Meta File (AMF). For instance, in the ROS context, the Code 

Generator could generate a ROS action interface and a list of callbacks to receive/send the inputs/outputs 

listed in the algorithm meta file. Furthermore, this mechanism can also be exploited to generate interfaces for 

algorithm whose meta file (and possibly some pseudo-code description) has been realized in Modelling Tool 

and the implementation is left to a software developer. 

In relation to these two identified roles, the template-based generation pattern was identified as the best suited 

to produce the executable code. Therefore, the main input of the code generator is a description of the state 

machine using State Chart XML notation that has been specifically extended in order to provide additional 

information to map each active state to the selected functionality. In addition to the state machine description, 

the Code Generator also receives the target runtime on which the generated code will be executed. 

 

The final design of the Code Generator will be described as part of D5.4 – Final CPSwarm Modelling Tool. 

 

3.1.9 Deployment Tool 

 

Figure 7. Components of the CPSwarm Deployment Tool 

The CPSwarm Deployment Tool is responsible for the over-the-air deployment of generated code onto target 

devices. A deployment task consists of assembly (package preparation), transfer, installation, and activation 

(execution)9. Deliverables D3.1 and D3.2 elaborated on the initial technical details of the CPSwarm Deployment 

Tool. While the overall idea remains the same, the design has shifted from a conceptual state closer to 

realization. The changes address the functional requirements of the system and range from component 

structure to communication patterns, interfaces, and responsibilities. 

 

Figure 7 shows an abstract component structure of Deployment Tool. The Deployment Tool consists of two 

components: 

 

Deployment Manager: The server-side component responsible for assembly and transfer of packages 

to designated targets. This component provides an interface to users, enabling task definition, target 

selection, and status monitoring.  

 

Deployment Agent: The client-side component deployed on individual target devices which is 

responsible for installation, testing, and activation. The Deployment Agent is also responsible for 

advertising the target to the Deployment Manager. 

                                                
9 Software Deployment: https://en.wikipedia.org/wiki/Software_deployment 
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Deployment Manager and Deployment Agents communicate with each other over the network using resource-

friendly messaging protocols. Section 5.2.2 elaborates on the applied techniques that ensure that the 

Deployment Manager can coup with large number of Deployment Agents. Furthermore, sections 4.2.6 and 

4.2.7 describe the applied methods to ensure secure deployment and application runtime. 

 

The detailed description of the Deployment Tool, its requirements, and the first working design were presented 

in document D7.3 – Initial Bulk Deployment Tool. The final version uses state-of-the-art security techniques to 

ensure package integrity, authentication, and authorization. Furthermore, it addresses the usability aspects of 

software deployment using a graphical user interface. The final version will be described in D7.4 - Final Bulk 

deployment tool. 

 

3.1.10 Abstraction Layer 

The Abstraction Layer is an instantiation of a set of functions from the Abstraction Library on top of a swarm 

device. It fulfils standard functionalities such as communication with monitoring station and other swarm 

members. Moreover, it provides a uniform API for high level code to access the underlying heterogeneous 

hardware and basic functionalities. The Abstraction Layer is essential for the Code Generator, as  the uniform 

API allows generated code to be reusable on different devices. In the previous design, the scope as well as the 

API provided by the Abstraction Layer were not clearly defined. Since the last deliverable, the consortium has 

refined the specification of the Abstraction Layer. Namely, the Abstraction Layer now provides two types of 

interfaces: 

 

 Abstract access to heterogeneous sensors/actuators 

 Abstract access to the basic functionalities of the swarm devices 

 

A typical robot, such as a rover or a drone, would have multiple sensors to detect the environment as well as 

actuators to interact with the outside world. However, the sensors and actuators used on different devices are 

often heterogeneous and requires special drivers to access them. Therefore, the Abstraction Layer must hide 

the hardware specific details and provide a uniform, high-level abstract access to these resources. As an 

example, ROS uses the topic as an abstract access method to get information from sensors and send 

instructions to actuators. Only in this way, the high-level behaviour code generated by the Code Generator can 

be free from the hardware specific details and be ported to different devices without major difficulties. 

 

In addition to sensors and actuators, a robot may come with some basic functions which it can perform out of 

the box. Drones, for example, may come with basic functions such as take-off and landing. The Abstraction 

Layer is also responsible for exposing  such basic functionalities through a high-level abstract access. As an 

example, ROS uses the action interface to expose a function of the robot. Through the abstract access to the 

basic functions these may be assigned to a specific state in the behaviour state machine. 

 

Besides that, the author of the Abstraction Layer for a specific device is also expected to provide a so-called 

abstraction description file (ADF). The ADF is a new addition to the Abstraction Layer. It describes the available 

APIs on the Abstraction Layer, e.g. what sensors/actuators are available, what basic functionalities the device 

can perform. Such information will be described in a standard way, so that different components within the 

CPSwarm system can interpret it uniformly. The information is essential during algorithm mapping in the 

Modelling Tool as well as during simulation and optimization.  

 

Within CPSwarm, prototypical Abstraction Layers for rovers and drones used in demo are developed as proof 

of concept. In reality, the development of Abstraction Layer for different robots is expected to be carried out 

by manufacturers or the open source community. Indeed, for hardware to be supported by CPSwarm 

Workbench, it is assumed that Abstraction Layers for swarm members are already available and follow the 

convention defined by CPSwarm. 



 

Deliverable nr. 

Deliverable Title 

Version 

D3.3 

Final System Architecture & Design Specification 

1.0 - 10/07/2019 

Page 17 of 35 

 

 

3.1.11 Monitoring & Command Tool 

The Monitoring & Command Tool addresses the challenges related to the after-deployment phase, i.e., during 

mission execution. Its main objective is to monitor the swarm members’ behaviour by constantly supervising 

the individual swarm members, the swarm behaviour and performance. Rather than applying local control, it 

offers the means for continuously checking the performance of whole swarm with respect to the mission goal. 

In addition to monitoring, the Monitoring & Command Tool also tackles (re-)configuration of swarm members’ 

parameters depending on external factors.  

 

Swarm members can receive commands, for example to switch between pre-programmed behaviours, and/or 

configuration parameters through the channel established by the Monitoring & Command Tool, exploiting the 

telemetry core of the runtime environment. Currently, the set of allowed commands as well as the set of 

envisioned configuration parameters is under development.  

 

The Monitoring & Command Tool runs exclusively in the Runtime Environment. After the deployment phase, 

the Monitoring & Command Tool is necessary to monitor the actual status of the swarm, as well as to send 

reconfiguration commands to modify the swarm behaviour, for e.g. to abort the mission or to re-purpose part 

of the swarm members. On one hand, it gathers live telemetry data from the swarm members and on the other 

hand, sends out runtime command to the individual swarm members. The information gathered will be 

presented to the user using the GUI of the Monitoring & Command Tool. 

 

Data exchanged between the swarm members and the Monitoring & Command Tool, natively exploits a 

Publish/Subscribe interaction pattern to account the fact that: 

1. Multiple listeners might need to receive telemetry or sensory data on a dynamic subscription basis. 

Publish/Subscribe natively supports this requirement by decoupling event sources from event 

consumers. 

2. Data may be transferred opportunistically, depending on the actual connectivity and network 

conditions. This prevents the adoption of any client-server-like interaction paradigm where the CPS 

acts as server. Cases in which the CPS system plays the client role are possible, however they might 

not be suited to high-frequency / high-cardinality data streams. 

 

The current design of the Monitoring & Command Tool will be described in D7.5 - Initial Monitoring and 

Configuration Framework. 

 

 

3.2 Information View 

To help the reader better understand the interaction between components within the CPSwarm system, a high-

level information view of the system will be presented in this chapter. Figure 8 shows the information flow 

between components within the CPSwarm system. It is worth noting that most components do not 

communicate directly with each other, but instead exchange information with the help of the Launcher. 
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However, in Figure 8 the Launcher component is omitted to better highlight the information flow from one 

component to another. The information flows are numbered and explained in the following sections. 

 

 

Figure 8. Information flow between components within the CPSwarm system 

 

Flow 1 – Between the Modelling Library and the Modelling Tool 

A set of prerequisite information is required by the Modelling Tool to carry out the swarm design activities. 

More information is passed for this purpose from the Behaviour Library (Flow 6). Flow 1 passes the following 

information: 

 CPS hardware specifications: the hardware specifications, e.g. the 3D models, the equipped 

sensors/actuators and their properties. 

 Environment models: the models of an environment in which simulation is carried out. This piece of 

information is needed by the simulator to build up the simulated environment to test the swarm 

algorithm. 

 Fitness function: the function used to calculate the fitness score by the Simulation Manager.  

 

Flow 2 – The Modelling Tool to the Simulation Optimization Orchestrator 

The Modelling Tool outputs the following information to the Simulation and Optimization Environment: 

 Algorithm mapping: the mapping between the pre-defined algorithm input/output and the 

Abstraction input/output. This piece of information is needed by the simulator run simulations using 

the given algorithm. 

 Swarm composition configuration: the configuration indicating what devices the swarm consists of 

and how they interact with each other. This piece of information is needed by the simulator to populate 

the simulation environment with proper devices. 

 Fitness function implementation: an implementation of the fitness function in code. It is required by 

the Simulation Managers to evaluate the performance of a candidate algorithm during the 

optimization phase. 

 Environment models: the models of an environment in which simulation is carried out. This piece of 

information is needed by the simulator to build up the simulated environment to test the swarm 

algorithm. 

 CPS hardware specifications: the hardware specifications, e.g. the 3D models, the equipped 

sensors/actuators and their properties.  

 

Flow 3 – Between the Simulation Optimization Orchestrator and the Optimization Tool 

This consists of bi-directional communication from SOO and Optimization Tool during the optimization phase: 
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 Optimization Configuration: this is the configuration which tells the Optimization Tool how to run 

the optimization process. It typically includes settings such as how many algorithm candidates to 

evaluate, how many iterations to run during optimization, what type of candidate algorithm should be 

generated (e.g. Artificial Neural Network), etc. This configuration is passed to the Optimization Tool at 

the beginning of the optimization phase. 

 Optimized candidate controller: this is the optimized candidate controller implementation which is 

generated after the optimization phase has finished and it is passed from the Optimization Tool to the 

SOO. The optimized controller will be then further passed from the SOO to the Code Generator to be 

turned into platform dependent code. 

 

Flow 4 - Between the Optimization Tool and Simulation Managers 

Bi-directional communication between the Optimization Tool and Simulation Managers during the 

optimization phase. It contains the following information: 

 Candidate Controller: this piece of information is passed from the Optimization Tool to the Simulation 

Manager. It is the implementation of an algorithm candidate, which is to be evaluated by the simulator. 

The candidate controller is passed to the Simulation Manager for each evaluation cycle. 

 Fitness Score: this piece of information is passed from the Simulation Manager to the Optimization 

Tool. It is the result of the simulation with a candidate controller. It represents the performance of the 

candidate and is used by the Optimization Tool to pick the better performing candidates for further 

optimization. 

 

Flow 5 – The Simulation Optimization Orchestrator to Simulation Managers 

The SOO submits the following information to each Simulation Manager: 

 Simulation Configuration: configuration necessary for each simulator to run. It typically includes the 

simulated environment models, the simulated swarm composition, the simulation steps, etc. This piece 

of information is passed to each Simulation Manager before the simulation phase begins to prepare 

the simulators for simulation activities.  

 Fitness Function Implementation: this is the fitness function implementation from the Modelling 

Tool. In the case of optimization, this is passed to the Simulation Manager and used to calculate the 

performance score of a candidate controller during the simulation. This piece of information is passed 

to each Simulation Manager in the beginning of the optimization phase. 

 

Flow 6 – Between the Behaviour Library and the Modelling Tool 

Information passed between the Modelling Tool and the Behaviour Library during the modelling phase: 

 Abstraction Description File (ADF): The ADF is sent to the Modelling Tool for algorithm input/output 

mapping and mapping of basic functionalities. 

 Algorithm Meta File (AMF): The AMF is submitted to the Modelling Tool for the algorithm mapping. 

 Behaviour Algorithm: the behaviour algorithm implementation and finite state machine (FSM) is 

passed to the Behaviour Library. 

 

Flow 7 – The Behaviour Library to the Simulation Optimization Orchestrator 

The prerequisite information needed by the Simulation and Optimization Environment: 

 CPS Abstraction Layer: the Abstraction Layer implementation in the Behaviour Library. It is needed 

by each Simulation Manager to simulate the basic behaviour of a real device. 

 Behaviour Algorithm: the behaviour algorithm implementation in the Behaviour Library. It is needed 

by each Simulation Manager to simulate the behaviour of the algorithm in the simulated environment. 

 

Flow 8 – Between the Behaviour Library and the Code Generator 

The input needed by the Code Generator from the Modelling Library. It includes the following information: 

 Behaviour Algorithm: the behaviour algorithm implementation in the Behaviour Library. Typically, the 

behaviour algorithm is implemented with a single programming language. To support running the 
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algorithm on different target environments, the Code Generator needs to generate platform 

dependent code from the behaviour algorithm source code. 

 

Flow 9 – The Modelling Tool to the Code Generator 

The information passed to the Code Generator includes: 

 Behaviour state machine model: this is the behaviour state machine built by the user using the 

Modelling Tool. The Code Generator needs the state machine model to generate the backbone 

behaviour code for specific devices. 

 

Flow 10 – The Code Generator to the Deployment Tool 

The output from the Code Generator to the Deployment Tool. It includes the following information: 

 Source Code: the Code Generator should output platform dependent source code which is ready to 

be compiled locally or to be deployed directly to target devices. For example, the prototypical ROS-

based Code Generator produces the deployable source code including a ROS-based behaviour state 

machine implementation, algorithm source code organized as ROS packages as well as the proper ROS 

launch files. 

 

Flow 11 – The Deployment Tool to the Abstraction Layer 

The deployment process from the Deployment Tool to the Abstraction Layer. The Deployment Tool supports 

two operating modes: 1) compiling the source code locally and deploying the compiled artefacts on target 

devices, and 2) deploying source code directly on target devices and running build scripts to compile it on 

target devices. Depending on the operating mode, different data will be sent in the data flow between the 

Deployment Tool and the Abstraction Layer. Typically, it could include the following information: 

 Compiled Artefacts: in the first operating mode, the Deployment Tool builds the source code from 

the Code Generator into compiled artefacts. These artefacts are sent to devices to be installed and 

executed. 

 Source Code and Build Instructions: in the second operating mode, the Deployment Tool sends 

source code as well as the build instructions to target devices. The source code will then be compiled 

according to instructions on the target device. The generated artefact can then run on the target 

device. 

 

Flow 12 – Between the Abstraction Layer and the Monitoring & Command Tool 

Bi-directional data exchange between swarm members and the Monitoring & Command Tool during runtime. 

It contains the following information: 

 Swarm member status: this information flows from the swarm members to the Monitoring & 

Command Tool. During runtime, each of the swarm members keeps sending their real-time status, 

such as location, current mission, battery life, etc., to the Monitoring & Command Tool, so that the 

operator running the Monitoring & Command Tool will always have up-to-date knowledge of the 

status of the swarm. 

 Operator instructions: this information flows from the Monitoring & Command Tool to the swarm 

members. It represents the instructions given by the operator to the swarm, such as changing the 

swarm behaviour, shutting down the swarm, etc. This allows the operator to have full control of the 

swarm during runtime. 
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3.3 Deployment View 

Figure 9 shows the deployment view of the CPSwarm system. The three-dimensional rectangles represent 

physical hardware. The rectangles decorated with two small rectangles represent the software components 

deployed on each hardware instance. The lines between them highlight the interaction between components. 

 

 

Figure 9. CPSwarm deployment view. This figure borrows symbols from UML but it does not strictly follow the 
UML specification. 

Most development-time components such as the Modelling Tool, Code Generator, Deployment Tool are 

applications which run locally on the developer’s PC. The remote repositories are hosted on a remote, public 

server, from which the developer can pull sources to use them locally during the swarm design phase. 

 

Importantly, to tackle the scalability issues in simulation and optimization, the CPSwarm system allows the use 

of distributed PCs to run simulation simultaneously. This feature is shown in the diagram, where the Simulation 

& Optimization Orchestrator is interacting with three Simulation Managers, one residing locally in the 

developer’s PC, the other two in distributed environment. In simple use cases, where distributed computation 

is not needed, the user can simply spin up the Simulation Manager and the simulator locally to solve the 

problem. In more complicated situations, distributed simulation servers could be utilized to provide more 

computing power to speed up the optimization process. All the communication with these Simulation 

Managers is managed by the Simulation & Optimization Orchestrator. On the other hand, the Deployment 

Manager which consists of a backend and frontend component can be deployed on a server to cope with large 

scale deployment requirements. This also makes the Deployment Tool highly available, allowing the user to 

collect information about deployments even when the local PC is not available. 

 

On each device within a swarm, a Deployment Agent as well as the Abstraction Layer is deployed. The 

Deployment Agent enables the interaction between the CPS swarm device and the Deployment Manager. The 

Abstraction Layer on one hand hides hardware implementation details of the swarm device and provides higher 
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level interface, so that it is easier generate code targeting different platforms. On the other hand, it integrates 

a communication framework which offers communication functionality to enable real-time communication 

between swarm members as well as between swarm members and the Monitoring & Command Tool.  

 

The Monitoring & Command Tool provides access to the current status of the swarm as well as methods to 

control the swarm during runtime. Since publish-subscribe communication mechanism is used for swarm 

communication, multiple Monitoring & Command Tools could be present, enabling concurrent monitoring by 

multiple people.  
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4 Security and Safety Analysis 

4.1 Review of Previous Analysis 

The initial architecture deliverable (D3.1) described a high-level list of possible threats to the CPSwarm System, 

as well as a collection of possible countermeasures which can be applied both concerning software and 

hardware security. The project collected some observations on how to integrate these countermeasures into 

the CPSwarm Architecture, from the Design Environment through the Workbench components and finally into 

the Runtime Environment. The intermediate architecture deliverable (D3.2), updated the security analysis and 

proposed planned countermeasures based on the second version of the CPSwarm Architecture. The 

Consortium organized two security workshops before M18. The first resulted in an agreement on the exact 

features that should be realized, upon SLAB’s proposals of safety and security features. The second workshop 

focused on implementation details for a subset of these countermeasures to be included in the first 

demonstration of the CPSwarm Runtime Environment. As a result, the previous deliverable D3.2 provided an 

analysis of a unified framework for secure communications, the platform hardening, fault and tamper detection, 

contingency behaviours, emergency remote control and shutdown, code singing and signature validation and 

rights management. 

4.2 Final Analysis 

During the last phase of the CPSwarm project, the final analysis focuses on the actual vision scenarios and use 

cases. The project specified security threats, countermeasures and safety risks accordingly and as a result, fine-

tuned the previous security components. Therefore, a shift of focus emerged towards secure communication, 

platform hardening, and emergency shutdown. 

The results of the final security analysis will be presented in the upcoming D4.8 deliverable of Work Package 4 

that will evaluate the use case scenarios from a security perspective. The document will outline possible 

attackers and their goals, visualize them using attack trees and provide potential countermeasures. Most 

countermeasures will be generic, and a subset of them will shape the way some components in the architecture 

behave. However, most of these solutions are foreseeable and the next chapters describe how these will be 

implemented. 

4.2.1 Unified framework for secure communications  

The vision was to create a unified solution for all the communications which take place while the swarm is 

performing its function, including all communications between swarm members and between individual swarm 

members and the tools included in the CPSwarm Workbench: the Deployment Tool and the Monitoring and 

Command Tool. To make all communications secure, all parties need to be able to authenticate each other and 

to exchange messages with strong confidentiality and integrity protection. The Consortium has agreed on 

using IP based networking; however, since the project focuses on different vision scenarios, there are multiple 

network stacks that the partners aim to support: 

 Standard, infrastructure mode wireless network (based on IEEE 802.11 a/b/g/n/ac) 

 Cellular network (based on 3G/LTE) 

 Time triggered wireless network (based on TTTech proprietary technology) 

 Low-rate wireless personal area mesh network (based on IEEE 802.15.4) 
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After considering these requirements (and the requirements derived from our vision scenarios), the Consortium 

decided to build a decentralized solution based on the Zyre10 implementation of ZeroMQ11, where swarm 

members talk to each other directly, without going through a central authority. While this will in turn requires 

more development effort, as there are fewer existing mature solutions, it is an overall better fit for the concept 

of a swarm – providing increased fault tolerance and more efficient communications over mesh networks. The 

Consortium agreed that the Confidentiality, Integrity and Availability of the assets should be partially protected 

by the Communication Library. The message types defined for the project will be protected according to Table 

1. 

Table 1. Protection goals of message types 

Message type Confidential Authenticated 

Event 

An event has occurred on one of the swarm members that need to be 

propagated 

Yes Yes 

Command 

The Monitoring and Command Tool has raised a remote event on a 

specific swarm member 

Yes Yes 

Artefact 

The Deployment Tool has sent a software artefact that needs to be 

deployed on the swarm member 

Yes Yes 

Status 

The swarm member has made progress deploying the software artefact 
Yes Yes 

Set / Get 

The Monitoring and Command Tool has sent a request to get or set the 

value for a global parameter of the behaviour 

Yes Yes 

Subscribe / Unsubscribe 

The Monitoring and Command Tool wants to subscribe to or unsubscribe 

from updates on a property 

Yes Yes 

Telemetry 

The swarm member has sent an update for the value of a property to a 

subscriber 

Yes Yes 

 

Please note that response messages, which only include a confirmation that the operation has completed 

successfully are not included, and that the descriptions in italic are only examples for how such a message 

might be used. 

 

The Communication Library implements the requirements from the table and therefore covers a great deal of 

attack surface and provides sufficient countermeasures for numerous attack scenarios. 

The final implemented security features will be based on the libhydrogen12 library using two cryptographic 

building blocks: the Curve25519 elliptic curve, and the Gimli permutation. Features include encryption, 

authentication and integrity protection along with a key exchange mechanism integrated into the discovery 

phase. The secure version of the Communication Library will be an extension of the current basic version of the 

library. The end users will be able to switch to the secure version by using a different endpoint class which will 

                                                
10 https://github.com/zeromq/zyre 
11 http://zeromq.org/ 
12 https://github.com/jedisct1/libhydrogen 
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transparently enable the secure features without any other configuration necessary. The Communication 

Library will be described in more detail in the upcoming D7.4 and D7.6 documents. 

4.2.2 Platform hardening  

Used in two of the CPSwarm use cases, ROS (Robot Operating System) is the project’s primary target software 

platform. Furthermore, the pilot partners select hardware platforms most relevant to the target use cases and 

vision scenarios. The platform hardening will start with a security analysis of the target platforms and end with 

testing and deployment. As a final result, a hardening guide and a optimized image will be delivered for each 

platform analysed at the end of the project. 

4.2.3 Fault and tamper detection  

For the sake of completeness, fault and tamper detection are mentioned as generally necessary features to be 

implemented for a final version of CPS in production. However, they are beyond the scope of this project. Fault 

detection aims to detect any kind of misbehaviour of the components in order to make it possible to react to 

them, while tamper detection focuses on the (external) corruption of input values of the components. Tamper 

detection can be done by the use case partners by adding hardware components to their system and defining 

software behaviours in case these are triggered. From a security perspective, these new hardware modules can 

provide a trusted environment within the devices. In case the devices are tampered with, their assets (and 

possibly the mission) can be compromised to cause safety or security breaches. 

Figure 10 depicts an abstract model of a swarm member and describes how to handle faults and tampered 

data by changing behaviour – see Section 4.2.4. 

  

 

Figure 10. High-level model of a swarm member 

4.2.4 Contingency behaviours  

Contingency behaviours – as a safety feature – can be a way to tackle faulty components, such as stopping or 

going to a safe place when detecting a hardware failure. They can also be triggered by an Operator, through 

the Monitoring and Command Tool or by an external event sensed in the environment. This countermeasure 

primarily addresses safety concerns. Different behaviours can be configured to protect tangible and intangible 

assets. Designing contingency behaviours will be part of the modelling phase and will be integrated in the 

design experience of the high-level state machine defining the behaviour of individual swarm members. The 

Modelling Tool will also support the design process of these behaviour changes by including a feature that 

makes it possible to model the events that trigger behaviour changes.  
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4.2.5 Emergency remote control and shutdown 

By switching to emergency remote control mode using the Monitoring and Command Tool, the (authenticated 

and authorized) Operator of the swarm can take control over a swarm member manually in any security or 

safety critical situation where predefined contingency behaviours might fail, or whenever such control might 

be required to perform an action the swarm member is incapable of performing on its own.   

Emergency shutdown can be viewed as a specific contingency behaviour that can be triggered by either the 

Operator through the Monitoring and Command Tool or by specific events connected to predefined input 

ranges. This can be an efficient solution to ensure the safety of the swarm, other objects or even humans in a 

critical situation, for example in extreme weather conditions. The partners aim to provide two different types 

of emergency shutdown: 

 Soft-stop – the swarm members return to the base stations. 

 Hard-stop – the swarm members stop at the next safe opportunity. 

Apart from being triggered by the Monitoring and Command Tool, a physical switch – an IoT device – can also 

be connected to the swarm and can be used to send the emergency shutdown request, thus providing a safe 

emergency shutdown feature for a swarm that is operating autonomously. A proof of concept device has been 

successfully presented in operation during the M18 demo: a NanoPi NEO Air-based device capable of running 

ROS was used to send an emergency shutdown message to a drone via Wi-Fi using the project’s 

communication protocol. 

4.2.6 Secure initial deployment 

During manufacturing, it is paramount to load the necessary certificates and generate public-private key pairs 

for the devices in a trusted environment. The process of key generation and key exchange will be done 

according to the Ironhouse13 pattern using CurveZMQ14. The workflow for setting up a device (Agent) and 

register it with the Deployment Tool (Server) is as follows: 

1. The deployment administrator authenticates (with credentials) and asks for a token from the Server over 

the RESTful API or GUI 

2. The deployment administrator starts the Agent on device, generating a key pair locally. 

3. The deployment administrator starts the Agent on device with the token as a process environment 

variable. 

4. The Agent generates a key pair and contacts the Server's RESTful API, submitting the token (to 

authenticate) and its public key for CurveMQ. 

5. The Server invalidates the token so it can no longer be used. 

6. The Agent contacts the Server over the network. They establish a secure channel using CurveZMQ. 

The steps from step 2 are automated. The token used has a sufficiently high entropy (48 bits) to resist any 

brute-force hacking attempts. 

4.2.7 Code signing and signature validation 

This security countermeasure addresses the Deployment Tool. The code generated by the Code Generator 

needs to be packaged and signed by the Deployment Manager and then it needs to be validated before 

execution by the Deployment Agent. The signed package could contain additional restrictions, such as 

specified target platforms, expiry and downgrade protection. As code signing is a possible countermeasure for 

specific attacks regarding the upgrade procedure, this feature will be addressed in more detail in D4.8. 

                                                
13 https://github.com/pebbe/zmq4/blob/master/examples_security/ironhouse.go 
14 http://curvezmq.org/ 
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4.2.8 Rights management 

Being able to authorize entities that can affect the operation of the swarm adds an extra layer of security to 

the system. Revoking rights from compromised swarm members can isolate those members and prevent a 

breach in the whole swarm. Moreover, limiting rights to certain operations can minimize the possible damage 

done by a compromised swarm member. Authorization can enforce the separation of different maintenance 

and monitoring tasks of the operators, such as deployment, monitoring, configuration and remote control.  
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5 Scalability Analysis  

5.1 Review of Previous Analysis 

In D3.1, the importance of scalability within the CPSwarm project was discussed. In particular, two aspects 

which are likely to cause scalability issues and performance bottlenecks were analysed: simulation and 

deployment.  

 

For simulation, in order to find out the proper algorithm for a swarm via the evolutionary approach defined in 

CPSwarm, a large number of simulation iterations are necessary (often hundreds, thousands or tens of 

thousands of iterations) to constantly test the performance of a specific candidate. With only a single computer, 

it could take a very long time before a proper result is found. To tackle this problem, the initial analysis indicated 

that a solution with distributed computers each running simulation should be envisioned within the CPSwarm 

system. 

 

Besides simulation, deployment is another aspect which requires careful design in terms of scalability. When 

dealing with a large number of target devices, the typical approach in which developers deploy a newly 

updated program manually to each single device is extremely repetitive and error-prone. To solve this problem, 

an update system similar to the Over-The-Air (OTA) update mechanism in modern smart phones was created 

in CPSwarm. 

 

5.2 Final Analysis 

5.2.1 Simulation scalability analysis  

The final design of the Simulation and Optimization Environment has been presented in D6.2. The deliverable 

contains a detailed scalability analysis of the proposed solution and shows how the scalability issues identified 

in the previous version of the architecture (Micha Rappaport, 2018) have been solved. The following results 

have been obtained: 

1) Leveraging XMPP for the communication among the components. Core XMPP features15 include 

unique identifiers, presence mechanism and one-to-one chat messages; or some of the protocol 

extensions, like file transfer16 and publish/subscribe17.  This enables us to leverage the solid scalability 

features provided by the protocol18, 19.  

2) The introducion of a scalable discovery mechanism for the distributed Simulation Managers where the 

Simulation Managers announce themselves to the SOO when they are available, leveraging the XMPP 

presence mechanism. 

3) In the approach described in D6.1, the evaluation of the controller was conducted within the 

Optimization Tool based on the continuous exchange of messages with the simulation environment 

(centralized approach). This increased the number of messages exchanged and decreased 

performance. To address this issue, the final version sends the controller to the Simulation Manager 

and evaluates it locally within the simulator. As only the controller and fitness score are transferred, 

                                                
15 https://xmpp.org/rfcs/rfc6120.html 
16 https://xmpp.org/extensions/xep-0096.html 
17 https://xmpp.org/extensions/xep-0060.html 
18 https://www.igniterealtime.org/about/OpenfireScalability.pdf 
19 https://www.isode.com/whitepapers/xmpp-performance-constrained.html 
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the number of messages exchanged is much more limited, thus increasing performance (distributed 

approach). 

The analysis presented in D6.2 demonstrates that the performance of the distributed approach is better that 

of the centralized one in most scenarios. Furthermore, the partners have conducted an analysis of the 

performance of the approach as the number of Simulation Managers increases. Figure 11 shows the resulting 

optimization time with different number of Simulation Managers used. The chart shows measurements in line 

with the theoretically calculated performance. The performance scales well with the number of Simulation 

Managers. The performance improvement rate is minimized beyond 24 Simulations Managers, possibly related 

to the limited number of cores (24) available on the test cluster. 

 

Figure 11. Scalability with number of Simulation Managers of the optimization time of the distributed approach 
for varying simulation lengths. In this figure, the Simulation Managers are referred to as Simulation Servers 

(SSs). 

 

 

5.2.2 Deployment scalability analysis 

The CPSwarm Deployment Tool is built on top of the initial OTA update concept. This provides tremendous 

benefit for deployment on multiple devices, relieving users from the burden of direct software deployment. 

However, an appropriate set of technologies are required to optimally deploy software on resource-

constrained swarm devices.  

 

The Deployment Tool’s update system is based on a publish-subscribe messaging pattern tailored for the 

management of a large number of devices using a simple interface provided by the Deployment Manager. The 

publish-subscribe messaging pattern enables scalable update propagation and monitoring in contrast with a 

request-reply pattern that relies on frequent polling. Furthermore, it saves network traffic by multicasting 

packets at the edge of a CPS network using the Pragmatic General Multicast20 protocol. This way, the 

                                                
20 https://en.wikipedia.org/wiki/Pragmatic_General_Multicast 
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Deployment Manager sends a single copy of messages to a remote network which are then multicasted locally 

to designated targets. 

 

The Deployment Manager is designed with concurrency in mind, however as a centralized instance, it is still 

subject to host environment limits. To overcome scaling issues when dealing with thousands of devices, the 

Deployment Manager could benefit from a broker-based architecture with a simple load-balancing scheduler.  
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6 Conclusion 

This deliverable presented the final system architecture design of CPSwarm. The project has evolved 

significantly since the initial phases, leading to discovery of new challenges and potential solutions. As a result, 

the architecture design went through an iterative process, reaching the final form that is documented in this 

deliverable. This document provided a high-level overview of the technical aspects of the CPSwarm 

architecture, leaving fine-grained technical details to the technical deliverables of the individual project tasks. 

 

The final architecture paves the way for future development and integration activities in Task 3.3 - Continuous 

System Integration. Work in the following months will focus on component integration. The final status of 

CPSwarm Workbench and associated tools will be reported in deliverable D3.6. 
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Acronyms 

 

Acronym Explanation 

AMQP Advanced Message Queuing Protocol 

API Application Programming Interface 

ARGoS Autonomous Robots GO Swarming 

CPS Cyber Physical System 

CRUD Create, Read, Update, and Delete 

DDS Data Distribution Service 

DNS Domain Name System 

GUI Graphical User Interface 

HTTP Hypertext Transfer Protocol 

MARTE Modelling and Analysis of Real-Time Embedded Systems 

MQTT Message Queuing Telemetry Transport 

OASIS Advancing Open Standards for the Information Society 

OT Optimization Tool 

OTA Over-The-Air 

ROS Robot Operating System 

SASL Simple Authentication and Security Layer 

SDF Simulation Description Format 

SITL Software-in-the-loop 

SM Simulation Manager 

SOO Simulation and Optimization Orchestrator 

SOTA Structure Oriented Test and Analysis 

STDR Simple Two-Dimensional Robot Simulator 

SysML System Modelling Language 

TLS Transport Layer Security 

V-REP Virtual Robot Experimentation Platform 

VTOL Vehicle Take-off and Landing 

XML eXtensible Markup Language 

XMPP eXtensible Messaging and Presence Protocol 

ZMQ ZeroMQ 
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