

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D3.3 – FINAL SYSTEM ARCHITECTURE & DESIGN

SPECIFICATION

Deliverable ID D3.3

Deliverable Title Final System Architecture & Design Specification

Work Package WP3 – Architecture design and Component Integration

Dissemination Level PUBLIC

Version 1.0

Date 2019-07-10

Status Final

Lead Editor Farshid Tavakolizadeh (FRAUNHOFER)

Main Contributors Junhong Liang (FRAUNHOFER), Etienne Brosse (SOFTEAM),

Melanie Schranz, Micha Sende (LAKE), Ákos Milánkovich, Judit

Torma (SLAB), Andreas Eckel (TTTECH), Angel Soriano

(ROBOTNIK), Omar Morando (DGSKY), Davide Conzon,

Gianluca Prato (LINKS), Arthur Pitman (UNI-KLU)

Published by the CPSwarm Consortium

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 2 of 35

Document History

Version Date Author(s) Description

0.1 2019-05-17
Junhong Liang

(FRAUNHOFER)
Initial draft

 2019-06-04
Andreas Eckel

(TTTECH)
Minor revision

 2019-06-04
Etienne Brosse

(SOFTTEAM)
Revision

 2019-06-05

Davide Conzon,

Gianluca Prato

(LINKS), Arthur

Pitman (UNI-

KLU)

Updates to Related documents, Simulation and Optimization

Orchestrator, Optimization Tool, Simulation Manager, Code

Generator

0.2 2019-06-07

Farshid

Tavakolizadeh

(FRAUNHOFER)

Merged changes

0.3 2019-06-13

Farshid

Tavakolizadeh

(FRAUNHOFER)

Updated functional view chapter

 2019-06-13

Ákos

Milánkovich,

Judit Torma

(SLAB)

Updated security analysis

0.4 2019-07-01

Farshid

Tavakolizadeh

(FRAUNHOFER)

Polished the final architecture and overall content

1.0 2019-07-10

Farshid

Tavakolizadeh

(FRAUNHOFER)

Addressed interval review comments. Finalized for submission.

Internal Review History

Review Date Reviewer Summary of Comments

2019-07-05
Davide Conzon, Gianluca

Prato (LINKS)
Approved with minor comments

2019-07-09 Arthur Pitman (UNI-KLU) Approved with comments

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 3 of 35

Table of Contents

1 Executive Summary .. 4

2 Introduction .. 5

2.1 Related documents .. 5

3 Final Architecture Design .. 6

3.1 Functional View ... 6

3.1.1 Launcher ... 6

3.1.2 Modelling Tool ... 8

3.1.3 Modelling Library .. 10

3.1.4 Behaviour Library .. 11

3.1.5 Simulation and Optimization Orchestrator (SOO) ... 12

3.1.6 Optimization Tool ... 12

3.1.7 Simulation Manager .. 13

3.1.8 Code Generator ... 14

3.1.9 Deployment Tool .. 15

3.1.10 Abstraction Layer... 16

3.1.11 Monitoring & Command Tool ... 17

3.2 Information View .. 17

3.3 Deployment View ... 21

4 Security and Safety Analysis... 23

4.1 Review of Previous Analysis ... 23

4.2 Final Analysis .. 23

4.2.1 Unified framework for secure communications ... 23

4.2.2 Platform hardening .. 25

4.2.3 Fault and tamper detection .. 25

4.2.4 Contingency behaviours .. 25

4.2.5 Emergency remote control and shutdown ... 26

4.2.6 Secure initial deployment .. 26

4.2.7 Code signing and signature validation .. 26

4.2.8 Rights management .. 27

5 Scalability Analysis ... 28

5.1 Review of Previous Analysis ... 28

5.2 Final Analysis .. 28

5.2.1 Simulation scalability analysis .. 28

5.2.2 Deployment scalability analysis .. 29

6 Conclusion ... 31

Acronyms ... 32

List of Figures ... 33

List of Tables ... 33

Reference ... 34

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 4 of 35

1 Executive Summary

This document is a deliverable of the CPSwarm project, funded by the European Commission’s Directorate-

General for Research and Innovation (DG RTD), under the Horizon 2020 Research and innovation Program

(H2020). It is the final version of a series of deliverables (D3.1-D3.3), documenting the final architecture design

of the CPSwarm system. The architecture design documented in this deliverable is the final result of multiple

discussion and design iterations within the consortium. It serves as the high-level blueprint for the development

of individual software components within the project.

The final architecture design is heavily based on the second phase documented in D3.2 - Updated System

Architecture Analysis and Design Specification. To enhance the readability, content from D3.2 is reused in this

document to make it a complete and standalone document. The final architecture is then documented with

similar methodology used in previous series of deliverables, complying with the ISO/IEC/IEEE 42010 System

and software engineering (IEEE, 2011) standard. Relevant viewpoints of the system are presented as

documentation for different architectural aspects of the CPSwarm system.

Besides the main functional design, cross-cutting aspects such as security, safety and scalability are also

important topics in architecture design. The consortium has realized that these aspects must be addressed not

only in the implementation of single component, but also on a system level. As a result, the consortium’s

consideration regarding these aspects in separate sections at the end of this document.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 5 of 35

2 Introduction

The CPSwarm architecture specifies the structure of a system enabling model-based realization of

collaborative, autonomous CPSs. It consists of several cohesive, standalone components addressing different

aspects of swarm modelling, simulation, optimization, code generation, deployment, runtime, and monitoring.

This document presents the architecture according to ISO/IEC/IEEE 42010:2011 (IEEE, 2011), an international

standard for architecture descriptions of systems and software. The document focuses on functional view,

information view, and deployment view presented in chapters 3.1, 3.2, and 3.3 respectively.

In the second part of the document, design consideration regarding important cross-cutting aspects, such as

security, safety and scalability are elaborated. These aspects require efforts not only for the implementation of

a single component, but also on the system level. As a result, this document briefly discusses them in the scope

of system architecture.

2.1 Related documents

ID Title Reference Version Date

D2.1 Initial Vision Scenarios and Use Case Definition D2.1 1.0 M4

D3.1 Initial System Architecture & Design Specification D3.1 1.0 M6

D3.2 Updated System Architecture & Design Specification D3.2 1.0 M18

D5.1 CPSwarm Modelling Language Specification D5.1 1.0 M12

D5.2 Initial CPSwarm Modelling Tool D5.2 1.0 M9

D6.1 Initial Simulation Environment D6.1 1.0 M9

D6.2 Final Simulation Environment D6.2 1.0 M28

D6.3
Initial CPS System Design Optimization and Fitness

Function Design Guideline
D6.3 1.0 M18

D6.4
Final CPS System Design Optimization and Fitness

Function Design Guideline
D6.4 1.0 M30

D6.5 Initial Integration of External Simulators D6.5 1.0 M18

D6.6 Updated Integration of External Simulators D6.6 1.0 M28

D7.1 Initial CPSwarm Abstraction Library D7.1 1.0 M18

D7.3 Initial Bulk Deployment Tool D7.3 1.0 M21

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 6 of 35

3 Final Architecture Design

In this chapter, the final architecture design is documented in detail. In accordance to ISO/IEC/IEEE 42010:2011

architecture description, this chapter describes the functional, information and deployment aspects of the final

architecture.

3.1 Functional View

Figure 1 shows a functional view of the final CPSwarm architecture, which outlines the boundaries between

components as well as their relationships. The following sub-chapters focus on explaining the functionality of

each component. The arrows indicate the flow of information between components, which are described in

Section 3.2.

Figure 1. Final architecture design

3.1.1 Launcher

One goal of CPSwarm is to build a flexible and extensible swarm design system. To enhance the flexibility of

the system, the consortium decided to build the system with highly decoupled components instead of

monolithic software. To ease the difficulty of managing decoupled components, a launcher with a graphical

user interface (GUI) and backend service is developed to interconnect the different APIs of components. The

launcher service offers the following functionalities:

 A GUI to launch all components within the Workbench, helping the user to navigate through the CPSwarm

workflow by selectively enabling/disabling certain steps depending on available files

 A storage facility to manage a CPSwarm project which contains all data generated and needed for all

components within the Workbench

 Orchestration of configurations and input files between components

Figure 2 shows the internal structure of the launcher. As shown in the diagram, the Launcher consists of multiple

sub-components: the GUI, the Component Launcher and the Project File Manager.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 7 of 35

Figure 2. CPSwarm Launcher internal structure

The GUI is the interface which the user interacts with. Figure 3 shows a screenshot of a prototype design of the

GUI. On the left side, the Launcher includes tabs which represent different steps within the workflow of realizing

a swarm system. Once a tab is selected, the detailed content of a specific tab will be shown on the right side.

In the detail view of each tab, the user can specify the input files as well as the launching parameters for the

component to be launched. For example, in the “Swarm Modelling” tab (shown in Figure 3), the user can specify

the modelling files as the input for the Simulation Orchestrator. Selecting the “Launch Simulation Orchestrator”

button starts the target Simulation Orchestrator such that the user can proceed to work with the newly started

tool.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 8 of 35

Figure 3. Screenshot of the CPSwarm Launcher prototype

The File Manager manages CPSwarm related project files. As described in the following chapters, a large variety

of files are passed between different components within a single project. Managing these files manually would

be a tedious and error-prone task. Besides, it is difficult to share project files produced by multiple applications

among different developers, which is often the case when multiple users are involved in a complete swarm

design. The Launcher tackles this by providing a structured directory model. For every swarm design, a

CPSwarm project is created in the Launcher. The project provides a pre-defined file structure to store the files

generated by different components. When the Launcher starts a specific component, the path of the project is

also passed into that component. As a result, the components can read required files from and place generated

files into the project without manual interference. Moreover, the Launcher detects generated files and

automatically enables/disables available functions. This helps users follow a correct set of operations without

missing mandatory steps. Lastly, the uniform file structure allows project collaboration using off-the-shelf file

sharing and version control systems.

The CPSwarm Launcher will be thoroughly described in D3.6 – Final CPSwarm Workbench and associated tools.

3.1.2 Modelling Tool

The Modelling Tool provides the GUI interface for the user to model different aspects of a swarm. Compared

to previous designs, the Modelling Tool focuses on modelling only and performs a smaller set of tasks. The

reason for this change was to reduce dependencies on any single component and create a more modular,

extensible solution.

The Modelling Tool now focuses on modelling swarm behaviour related aspects. Other functionalities, such as

the modelling of hardware specifications, such as a swarm member’s 3D model, equipped sensors and the

properties of each sensor (e.g. accuracy, noise, etc.) are out of the scope of the Modelling Tool. Instead, such

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 9 of 35

hardware specifications are expected to be provided by the manufacturers or open source communities. In

addition, the modelling of environment is now expected to be carried out by third-party tools.

Figure 4. Hierarchical illustration of the core tasks of the Modelling Tool

In the final architecture, the following functionalities have been identified as the core tasks of the Modelling

Tool:

1) Modelling of the swarm composition

2) Modelling of behaviour state machines

3) Mapping of algorithm input and output

4) Modelling of fitness functions

Before explaining each core task in detail, it is beneficial to have an overview of the relationships between these

tasks. Figure 4 illustrates such relationships in a hierarchical way. The user will typically start the swarm design

process by modelling the swarm composition for the mission (marked as 1 in Figure 4). For each of the devices

in the swarm, the user will model a behaviour state machine (marked as 2 in Figure 4), which serves as the

backbone for each device’s behaviour in different situations. For a certain state, the user may want to use an

existing algorithm to control the device in that state. In this case, a mapping between the input/output of the

algorithm and the input/output of the device’s Abstraction Layer has to be done (marked as 3 in Figure 4).

Alternatively, the user may decide to use the optimization process to generate a new algorithm for a certain

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 10 of 35

state. In that case, the user will model a fitness function for that state (marked as 4 in Figure 4), which will later

be used by the Optimization Tool to find the best algorithm candidate.

In the following paragraphs, each core task is presented in detail.

Modelling of Swarm Composition

The first thing a user needs to do when designing a swarm is to determine the composition of the swarm. That

means, the user needs to model e.g. how many rovers or drones are used in the mission, what their models

are, and how they communicate and share information with each other. These pieces of information are needed

during the simulation and optimization phase to simulate the swarm.

Modelling of Behaviour State Machine

After the composition of the swarm has been defined, the next step would be to model the behaviour for each

swarm member. In CPSwarm, the consortium has decided to use a finite state machine to represent the high-

level behaviour of a swarm member. Each state within the state machine represents a certain algorithm that

controls the behaviour of the swarm member in a specific situation. For example, the drones in the search and

rescue demo may have one state in which they cover the infrastructure to inspect for anomalies, while another

state may guide trapped victims to the nearest exit. One important task of the Modelling Tool is to provide an

interface to model such state machines. During this process, the user defines the algorithm to be used in a

specific state, as well as the trigger conditions between states. According to the use cases, a user may want to

use a pre-defined algorithm or generate an algorithm using the Optimization Tool for a certain state. Different

modelling activities have to be carried out based on the chosen algorithm, as outlined in the following

paragraphs. The modelled state machine is later converted into runnable code by the Code Generator.

Mapping of Algorithm Input and Output

The user may choose to use a pre-defined algorithm for a certain state (e.g. State 3 in Figure 4). A pre-defined

algorithm would typically require certain inputs (such as input values of an infrared distance sensor) and

produces certain output (such as the twist vector for the wheel actuator). In order to use the algorithm on a

swarm device, the user needs to map the required input of the algorithm to the proper sensor APIs in the

Abstraction Layer and map the generated output to the actuator APIs in the Abstraction Layer. The Modelling

Tool should provide a graphical interface for the user to make such a mapping, which is similar to the Algorithm

Mapping box marked as 3 in Figure 4.

Modelling of Fitness Functions

Alternatively, user may choose to use the Optimization Tool to generate an optimized algorithm for a certain

state (e.g. State 2 in Figure 4). In order for the optimization process to work, the user needs to model the so-

called fitness function (marked as 4 in Figure 4). The fitness function is a function which takes some KPIs of a

simulation as input and outputs a score. The output score indicates how well the algorithm behaves within the

simulation. The fitness function is needed by the Optimization Tool during optimization phase, so that it can

use the fitness function to evaluate the performance of each candidate algorithm, hence selecting the best and

eliminating the worst.

The final specifications of the Modelling Tool will be presented in D5.4 – Final CPSwarm Modelling Tool.

3.1.3 Modelling Library

The Modelling Library stores and provides reusable parts of models for the Modelling Tool. It is an archive of

SysML 1.2 models serialized using the XMI 2.1 standard.

The Modelling Library contains the following types of models:

CPS Hardware Specifications

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 11 of 35

The CPS hardware specifications include information related to the hardware aspects of a specific CPS. For

example, the 3D model of the CPS, the specifications of its sensors and actuators (such as the accuracy, bias,

noise). Such information is required to carry out simulations of the CPS.

Environment

This part of a CPSwarm model represents the field or environment in which the swarm will operate. It describes

the environment, such as how large it is and what objects exist within it. This is needed to simulate the swarm

behaviour in different kinds of fields, testing its robustness against possible changes of the external conditions.

Cost Function

To evaluate the resulting behaviour of a modelled swarm in a specific environment, one or many criteria related

to the result must be defined. Such criteria, known as cost functions, are used to optimize the modelled swarm

according to an environment. A lot of criteria are possible, including time spent, accuracy, security, robustness,

and power consumption.

The final design of this component will be described in D4.3 – Final CPS modelling library.

3.1.4 Behaviour Library

The Behaviour Library is a collection of software libraries that enable the operation of swarm devices at different

layers. These libraries are open source and available as public Git repositories. The initial set of libraries are

being developed as part of CPSwarm will be available on CPSwarm GitHub organization1. The libraries can be

extended by external contributors via Git forking. An extended library may remain and be used as a standalone

repository or submitted to the master repository via a Git pull request. Merging external changes into a master

library is subject to the approval of the library owner.

The Behaviour Library included two set of libraries:

Abstraction Library

The CPS Abstraction Library includes libraries that implement communication functionalities as well as

abstraction of heterogeneous hardware and native CPS functionalities. These libraries are the building blocks

of an Abstraction Layer for a specific CPS device. It is expected that the Abstraction Layer is deployed on target

devices, before they can interact with other components within the CPSwarm system. Besides the source code

implementation, the Abstraction Library contains also provide an abstraction description file (ADF), which

describe the exposed APIs of the Abstraction Layer implementation. For more detailed explanation, please refer

to chapter 3.1.10.

Swarm Library

The Swarm Library includes implementations of specific behaviour algorithms that control the CPS in a specific

state. These algorithms do not require optimization and will be deployed to the swarm device by the

Deployment Tool. Besides the source code implementation, each swarm algorithm should also provide a so-

called algorithm meta file (AMF) which describes the required inputs and the produced output of the algorithm.

This piece of information is required by the Modelling Tool to do the mapping between the algorithm

input/output and the Abstraction Layer input/output APIs.

The Behaviour Library will be described in D4.6 – Final Swarm modelling library and D7.2 – Final CPSwarm

Abstraction Library.

1 https://github.com/cpswarm

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 12 of 35

3.1.5 Simulation and Optimization Orchestrator (SOO)

This component orchestrates the simulation and optimization process. It is the only interface between the

Simulation and Optimization Environment and the rest of the Workbench. The SOO is part of the distributed

design for the Simulation and Optimization Environment of the CPSwarm Workbench which has been briefly

introduced in the deliverable D6.2 - Final Simulation Environment and is an evolution of the one described in

D6.1 - Initial Simulation Environment. The SOO is the centralized component connected from one side to the

Launcher and from the other side to the Optimization Tool (OT) and the distributed Simulation Managers (SMs)

using the eXtensible Messaging and Presence Protocol (XMPP)2. The interaction among the components is

described in D6.4 - Final CPS system design optimization and Fitness function design guideline. The SOO can

be used to perform either a simulation of an algorithm or optimization using an evolutionary algorithm. Both

the SOO and the OT maintain a list of available simulators, so they can choose which of them to use for the

simulations or optimization processes.

In the case of optimization, the SOO receives models of the CPSs and the environment from the Modelling

Tool, both described using the SDF format3. Furthermore, it receives an XML file (based on SDF, with some

extensions) that describes the inputs and outputs of the OT candidate that correspond to the sensors and

actuators of each swarm member. Finally, it receives the code of the fitness function to be used to evaluate the

optimized behaviour. When the SOO has chosen the suitable simulators, it sends the models and the candidate

description to the SMs that manage these simulators. Furthermore, it sends the configuration file to the OT to

configure the optimization process. Then, a set of XMPP chat messages are exchanged among the components

(fully described in D6.4). When the optimization is finished, the OT sends the SOO an optimized controller.

In the case of simple simulation, simulators receive the algorithm’s description and simulate the scenario

typically displaying a GUI, allowing the user to see if the algorithm works properly. The last version of the

Simulation and Optimization Environment architecture has introduced new scalability and deployment features

(please refer to D6.2 for full details). In this last release, the SOO can also be used also to deploy the required

set of SMs in a cluster of distributed machines using Kubernetes4. Using a web interface, the user is able to

monitor and orchestrate a large set of distributed SMs. The SOO is currently implemented as a Maven-based

Java application, which incorporates a XMPP client based on the Smack library5.

3.1.6 Optimization Tool

The Optimization Tool (OT) optimizes a control algorithm for an agent using a modular approach, where the

distinct steps of evolutionary design are split into different components (see Figure 5). It starts with a generic

representation of a control algorithm and searches for a viable solution using a heuristic search algorithm. The

control algorithm needs to be evolvable, i.e. modifiable by mutation and recombination. An example for such

a representation is an Artificial Neural Network (ANN). To apply the iterative heuristic search to find an

optimized configuration of the controller for a CPS, a measure of fitness needs to be defined for a given

problem scenario. A fourth component takes care of evaluating a pool of possible algorithm candidates and

provides a ranking for the evolutionary algorithm.

In the CPSwarm context, the result is a controller that implements local interaction rules that lead to the desired

global behaviour of the system. The controller can be evaluated with the Optimization Simulator by testing it

in a reference scenario or by performing a statistically significant number of simulations on a given scale of

parameters under predefined conditions.

2 https://xmpp.org/
3 sdformat.org
4 https://kubernetes.io/
5 https://www.igniterealtime.org/projects/smack/

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 13 of 35

Figure 5. Components of the Optimization Tool

The OT integrates an XMPP client to communicate with the SOO and the SMs using the set of APIs defined in

D6.4. It collects the presences of the available Simulation Managers and when it receives a start message from

the SOO, it chooses the ones to use and communicate directly with them in parallel, sending the candidate

controllers to be evaluated and receiving back fitness scores calculated using the designed fitness function.

After it has finished the optimization process, the OT sends the optimized controller back to the SOO. The OT

implements mechanisms that allow it to recover from failure during the optimization process.

3.1.7 Simulation Manager

The Simulation manager (SM) is the software component that wraps the simulation engine. The broker-based

approach designed for the Simulation and Optimization Environment provides distributed simulation engines,

each one with one SM to handle it. The SMs use XMPP to communicate both with the SOO and the OT. From

the SOO, the SM receives the models to be used for the simulation, the description of the inputs and outputs

of the candidate and the fitness function code. The OT provides the SM with the code of the candidate to be

evaluated through simulation. The role of the SM is to integrate all the files into the simulation engine (using

its own format) and to start the simulation. During optimization, the SM uses the fitness function to compute

the fitness score once the simulation is finished, which is subsequently returned to the OT.

The SM is composed of a set of Maven-based Java applications, namely the generic SM project, which contains

all the code common to all the managers, and the specific SM for each simulator. The partners are working on

a refactored version of the SMs, based on the use of the ros-osgi project6 that will be released by the end of

the project and described in deliverable D6.7 – Final Integration of External Simulators. At the time of writing,

specific SMs for Gazebo7 and Stage8 have been implemented. The integration of other simulators requires

further evaluation and is envisioned by the end of the project. SMs can be automatically deployed as Docker

containers using the SOO. While this option allows the user to rapidly deploy, monitor and orchestrate large

set of SMs, it is also possible to run a SM by hand to integrate a local external simulator.

6 https://github.com/ibcn-cloudlet/rososgi
7 http://gazebosim.org/
8 http://playerstage.sourceforge.net/

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 14 of 35

3.1.8 Code Generator

Figure 6. Code Generator role in CPSwarm workbench

One of the main purposes of the CPSwarm Workbench is to provide a framework able to ease and speed up

the development of new CPS applications through the use of model-based techniques. Against this

background, one of the most common approaches to go from models to deployable code is automatic code

generation for different platforms. The main idea behind this kind of approach is to realize a set of software

components that can be reused to produce different outputs according to the varying input they receive.

In the continuation of tasks 4.3 and 5.3, the consortium has decided to focus on the implementation of swarm

device behaviour algorithms modelled as Hierarchical Finite State Machines (HFSM). Each state of the state

machine can be associated with high-level functionality that can be selected from three different sources:

1. The Abstraction Library

2. An optimized algorithm coming from the Optimization Tool

3. The Swarm Library which contains different types of swarm algorithms (simple functions or complex

behaviours), generally handwritten taking inspiration from the biology.

For the first option, the Code Generator will serve as a “glue” between the platform-independent algorithm

modelled as a state machine and the Abstraction Library which provides a set of APIs to access the basic

functionalities of the CPS.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 15 of 35

In the other two cases, the Code Generator generates a software wrapper to enable the defined algorithm to

be called by a known interface supported by the CPS runtime environment. The information to generate this

wrapper can be extracted from the Algorithm Meta File (AMF). For instance, in the ROS context, the Code

Generator could generate a ROS action interface and a list of callbacks to receive/send the inputs/outputs

listed in the algorithm meta file. Furthermore, this mechanism can also be exploited to generate interfaces for

algorithm whose meta file (and possibly some pseudo-code description) has been realized in Modelling Tool

and the implementation is left to a software developer.

In relation to these two identified roles, the template-based generation pattern was identified as the best suited

to produce the executable code. Therefore, the main input of the code generator is a description of the state

machine using State Chart XML notation that has been specifically extended in order to provide additional

information to map each active state to the selected functionality. In addition to the state machine description,

the Code Generator also receives the target runtime on which the generated code will be executed.

The final design of the Code Generator will be described as part of D5.4 – Final CPSwarm Modelling Tool.

3.1.9 Deployment Tool

Figure 7. Components of the CPSwarm Deployment Tool

The CPSwarm Deployment Tool is responsible for the over-the-air deployment of generated code onto target

devices. A deployment task consists of assembly (package preparation), transfer, installation, and activation

(execution)9. Deliverables D3.1 and D3.2 elaborated on the initial technical details of the CPSwarm Deployment

Tool. While the overall idea remains the same, the design has shifted from a conceptual state closer to

realization. The changes address the functional requirements of the system and range from component

structure to communication patterns, interfaces, and responsibilities.

Figure 7 shows an abstract component structure of Deployment Tool. The Deployment Tool consists of two

components:

Deployment Manager: The server-side component responsible for assembly and transfer of packages

to designated targets. This component provides an interface to users, enabling task definition, target

selection, and status monitoring.

Deployment Agent: The client-side component deployed on individual target devices which is

responsible for installation, testing, and activation. The Deployment Agent is also responsible for

advertising the target to the Deployment Manager.

9 Software Deployment: https://en.wikipedia.org/wiki/Software_deployment

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 16 of 35

Deployment Manager and Deployment Agents communicate with each other over the network using resource-

friendly messaging protocols. Section 5.2.2 elaborates on the applied techniques that ensure that the

Deployment Manager can coup with large number of Deployment Agents. Furthermore, sections 4.2.6 and

4.2.7 describe the applied methods to ensure secure deployment and application runtime.

The detailed description of the Deployment Tool, its requirements, and the first working design were presented

in document D7.3 – Initial Bulk Deployment Tool. The final version uses state-of-the-art security techniques to

ensure package integrity, authentication, and authorization. Furthermore, it addresses the usability aspects of

software deployment using a graphical user interface. The final version will be described in D7.4 - Final Bulk

deployment tool.

3.1.10 Abstraction Layer

The Abstraction Layer is an instantiation of a set of functions from the Abstraction Library on top of a swarm

device. It fulfils standard functionalities such as communication with monitoring station and other swarm

members. Moreover, it provides a uniform API for high level code to access the underlying heterogeneous

hardware and basic functionalities. The Abstraction Layer is essential for the Code Generator, as the uniform

API allows generated code to be reusable on different devices. In the previous design, the scope as well as the

API provided by the Abstraction Layer were not clearly defined. Since the last deliverable, the consortium has

refined the specification of the Abstraction Layer. Namely, the Abstraction Layer now provides two types of

interfaces:

 Abstract access to heterogeneous sensors/actuators

 Abstract access to the basic functionalities of the swarm devices

A typical robot, such as a rover or a drone, would have multiple sensors to detect the environment as well as

actuators to interact with the outside world. However, the sensors and actuators used on different devices are

often heterogeneous and requires special drivers to access them. Therefore, the Abstraction Layer must hide

the hardware specific details and provide a uniform, high-level abstract access to these resources. As an

example, ROS uses the topic as an abstract access method to get information from sensors and send

instructions to actuators. Only in this way, the high-level behaviour code generated by the Code Generator can

be free from the hardware specific details and be ported to different devices without major difficulties.

In addition to sensors and actuators, a robot may come with some basic functions which it can perform out of

the box. Drones, for example, may come with basic functions such as take-off and landing. The Abstraction

Layer is also responsible for exposing such basic functionalities through a high-level abstract access. As an

example, ROS uses the action interface to expose a function of the robot. Through the abstract access to the

basic functions these may be assigned to a specific state in the behaviour state machine.

Besides that, the author of the Abstraction Layer for a specific device is also expected to provide a so-called

abstraction description file (ADF). The ADF is a new addition to the Abstraction Layer. It describes the available

APIs on the Abstraction Layer, e.g. what sensors/actuators are available, what basic functionalities the device

can perform. Such information will be described in a standard way, so that different components within the

CPSwarm system can interpret it uniformly. The information is essential during algorithm mapping in the

Modelling Tool as well as during simulation and optimization.

Within CPSwarm, prototypical Abstraction Layers for rovers and drones used in demo are developed as proof

of concept. In reality, the development of Abstraction Layer for different robots is expected to be carried out

by manufacturers or the open source community. Indeed, for hardware to be supported by CPSwarm

Workbench, it is assumed that Abstraction Layers for swarm members are already available and follow the

convention defined by CPSwarm.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 17 of 35

3.1.11 Monitoring & Command Tool

The Monitoring & Command Tool addresses the challenges related to the after-deployment phase, i.e., during

mission execution. Its main objective is to monitor the swarm members’ behaviour by constantly supervising

the individual swarm members, the swarm behaviour and performance. Rather than applying local control, it

offers the means for continuously checking the performance of whole swarm with respect to the mission goal.

In addition to monitoring, the Monitoring & Command Tool also tackles (re-)configuration of swarm members’

parameters depending on external factors.

Swarm members can receive commands, for example to switch between pre-programmed behaviours, and/or

configuration parameters through the channel established by the Monitoring & Command Tool, exploiting the

telemetry core of the runtime environment. Currently, the set of allowed commands as well as the set of

envisioned configuration parameters is under development.

The Monitoring & Command Tool runs exclusively in the Runtime Environment. After the deployment phase,

the Monitoring & Command Tool is necessary to monitor the actual status of the swarm, as well as to send

reconfiguration commands to modify the swarm behaviour, for e.g. to abort the mission or to re-purpose part

of the swarm members. On one hand, it gathers live telemetry data from the swarm members and on the other

hand, sends out runtime command to the individual swarm members. The information gathered will be

presented to the user using the GUI of the Monitoring & Command Tool.

Data exchanged between the swarm members and the Monitoring & Command Tool, natively exploits a

Publish/Subscribe interaction pattern to account the fact that:

1. Multiple listeners might need to receive telemetry or sensory data on a dynamic subscription basis.

Publish/Subscribe natively supports this requirement by decoupling event sources from event

consumers.

2. Data may be transferred opportunistically, depending on the actual connectivity and network

conditions. This prevents the adoption of any client-server-like interaction paradigm where the CPS

acts as server. Cases in which the CPS system plays the client role are possible, however they might

not be suited to high-frequency / high-cardinality data streams.

The current design of the Monitoring & Command Tool will be described in D7.5 - Initial Monitoring and

Configuration Framework.

3.2 Information View

To help the reader better understand the interaction between components within the CPSwarm system, a high-

level information view of the system will be presented in this chapter. Figure 8 shows the information flow

between components within the CPSwarm system. It is worth noting that most components do not

communicate directly with each other, but instead exchange information with the help of the Launcher.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 18 of 35

However, in Figure 8 the Launcher component is omitted to better highlight the information flow from one

component to another. The information flows are numbered and explained in the following sections.

Figure 8. Information flow between components within the CPSwarm system

Flow 1 – Between the Modelling Library and the Modelling Tool

A set of prerequisite information is required by the Modelling Tool to carry out the swarm design activities.

More information is passed for this purpose from the Behaviour Library (Flow 6). Flow 1 passes the following

information:

 CPS hardware specifications: the hardware specifications, e.g. the 3D models, the equipped

sensors/actuators and their properties.

 Environment models: the models of an environment in which simulation is carried out. This piece of

information is needed by the simulator to build up the simulated environment to test the swarm

algorithm.

 Fitness function: the function used to calculate the fitness score by the Simulation Manager.

Flow 2 – The Modelling Tool to the Simulation Optimization Orchestrator

The Modelling Tool outputs the following information to the Simulation and Optimization Environment:

 Algorithm mapping: the mapping between the pre-defined algorithm input/output and the

Abstraction input/output. This piece of information is needed by the simulator run simulations using

the given algorithm.

 Swarm composition configuration: the configuration indicating what devices the swarm consists of

and how they interact with each other. This piece of information is needed by the simulator to populate

the simulation environment with proper devices.

 Fitness function implementation: an implementation of the fitness function in code. It is required by

the Simulation Managers to evaluate the performance of a candidate algorithm during the

optimization phase.

 Environment models: the models of an environment in which simulation is carried out. This piece of

information is needed by the simulator to build up the simulated environment to test the swarm

algorithm.

 CPS hardware specifications: the hardware specifications, e.g. the 3D models, the equipped

sensors/actuators and their properties.

Flow 3 – Between the Simulation Optimization Orchestrator and the Optimization Tool

This consists of bi-directional communication from SOO and Optimization Tool during the optimization phase:

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 19 of 35

 Optimization Configuration: this is the configuration which tells the Optimization Tool how to run

the optimization process. It typically includes settings such as how many algorithm candidates to

evaluate, how many iterations to run during optimization, what type of candidate algorithm should be

generated (e.g. Artificial Neural Network), etc. This configuration is passed to the Optimization Tool at

the beginning of the optimization phase.

 Optimized candidate controller: this is the optimized candidate controller implementation which is

generated after the optimization phase has finished and it is passed from the Optimization Tool to the

SOO. The optimized controller will be then further passed from the SOO to the Code Generator to be

turned into platform dependent code.

Flow 4 - Between the Optimization Tool and Simulation Managers

Bi-directional communication between the Optimization Tool and Simulation Managers during the

optimization phase. It contains the following information:

 Candidate Controller: this piece of information is passed from the Optimization Tool to the Simulation

Manager. It is the implementation of an algorithm candidate, which is to be evaluated by the simulator.

The candidate controller is passed to the Simulation Manager for each evaluation cycle.

 Fitness Score: this piece of information is passed from the Simulation Manager to the Optimization

Tool. It is the result of the simulation with a candidate controller. It represents the performance of the

candidate and is used by the Optimization Tool to pick the better performing candidates for further

optimization.

Flow 5 – The Simulation Optimization Orchestrator to Simulation Managers

The SOO submits the following information to each Simulation Manager:

 Simulation Configuration: configuration necessary for each simulator to run. It typically includes the

simulated environment models, the simulated swarm composition, the simulation steps, etc. This piece

of information is passed to each Simulation Manager before the simulation phase begins to prepare

the simulators for simulation activities.

 Fitness Function Implementation: this is the fitness function implementation from the Modelling

Tool. In the case of optimization, this is passed to the Simulation Manager and used to calculate the

performance score of a candidate controller during the simulation. This piece of information is passed

to each Simulation Manager in the beginning of the optimization phase.

Flow 6 – Between the Behaviour Library and the Modelling Tool

Information passed between the Modelling Tool and the Behaviour Library during the modelling phase:

 Abstraction Description File (ADF): The ADF is sent to the Modelling Tool for algorithm input/output

mapping and mapping of basic functionalities.

 Algorithm Meta File (AMF): The AMF is submitted to the Modelling Tool for the algorithm mapping.

 Behaviour Algorithm: the behaviour algorithm implementation and finite state machine (FSM) is

passed to the Behaviour Library.

Flow 7 – The Behaviour Library to the Simulation Optimization Orchestrator

The prerequisite information needed by the Simulation and Optimization Environment:

 CPS Abstraction Layer: the Abstraction Layer implementation in the Behaviour Library. It is needed

by each Simulation Manager to simulate the basic behaviour of a real device.

 Behaviour Algorithm: the behaviour algorithm implementation in the Behaviour Library. It is needed

by each Simulation Manager to simulate the behaviour of the algorithm in the simulated environment.

Flow 8 – Between the Behaviour Library and the Code Generator

The input needed by the Code Generator from the Modelling Library. It includes the following information:

 Behaviour Algorithm: the behaviour algorithm implementation in the Behaviour Library. Typically, the

behaviour algorithm is implemented with a single programming language. To support running the

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 20 of 35

algorithm on different target environments, the Code Generator needs to generate platform

dependent code from the behaviour algorithm source code.

Flow 9 – The Modelling Tool to the Code Generator

The information passed to the Code Generator includes:

 Behaviour state machine model: this is the behaviour state machine built by the user using the

Modelling Tool. The Code Generator needs the state machine model to generate the backbone

behaviour code for specific devices.

Flow 10 – The Code Generator to the Deployment Tool

The output from the Code Generator to the Deployment Tool. It includes the following information:

 Source Code: the Code Generator should output platform dependent source code which is ready to

be compiled locally or to be deployed directly to target devices. For example, the prototypical ROS-

based Code Generator produces the deployable source code including a ROS-based behaviour state

machine implementation, algorithm source code organized as ROS packages as well as the proper ROS

launch files.

Flow 11 – The Deployment Tool to the Abstraction Layer

The deployment process from the Deployment Tool to the Abstraction Layer. The Deployment Tool supports

two operating modes: 1) compiling the source code locally and deploying the compiled artefacts on target

devices, and 2) deploying source code directly on target devices and running build scripts to compile it on

target devices. Depending on the operating mode, different data will be sent in the data flow between the

Deployment Tool and the Abstraction Layer. Typically, it could include the following information:

 Compiled Artefacts: in the first operating mode, the Deployment Tool builds the source code from

the Code Generator into compiled artefacts. These artefacts are sent to devices to be installed and

executed.

 Source Code and Build Instructions: in the second operating mode, the Deployment Tool sends

source code as well as the build instructions to target devices. The source code will then be compiled

according to instructions on the target device. The generated artefact can then run on the target

device.

Flow 12 – Between the Abstraction Layer and the Monitoring & Command Tool

Bi-directional data exchange between swarm members and the Monitoring & Command Tool during runtime.

It contains the following information:

 Swarm member status: this information flows from the swarm members to the Monitoring &

Command Tool. During runtime, each of the swarm members keeps sending their real-time status,

such as location, current mission, battery life, etc., to the Monitoring & Command Tool, so that the

operator running the Monitoring & Command Tool will always have up-to-date knowledge of the

status of the swarm.

 Operator instructions: this information flows from the Monitoring & Command Tool to the swarm

members. It represents the instructions given by the operator to the swarm, such as changing the

swarm behaviour, shutting down the swarm, etc. This allows the operator to have full control of the

swarm during runtime.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 21 of 35

3.3 Deployment View

Figure 9 shows the deployment view of the CPSwarm system. The three-dimensional rectangles represent

physical hardware. The rectangles decorated with two small rectangles represent the software components

deployed on each hardware instance. The lines between them highlight the interaction between components.

Figure 9. CPSwarm deployment view. This figure borrows symbols from UML but it does not strictly follow the
UML specification.

Most development-time components such as the Modelling Tool, Code Generator, Deployment Tool are

applications which run locally on the developer’s PC. The remote repositories are hosted on a remote, public

server, from which the developer can pull sources to use them locally during the swarm design phase.

Importantly, to tackle the scalability issues in simulation and optimization, the CPSwarm system allows the use

of distributed PCs to run simulation simultaneously. This feature is shown in the diagram, where the Simulation

& Optimization Orchestrator is interacting with three Simulation Managers, one residing locally in the

developer’s PC, the other two in distributed environment. In simple use cases, where distributed computation

is not needed, the user can simply spin up the Simulation Manager and the simulator locally to solve the

problem. In more complicated situations, distributed simulation servers could be utilized to provide more

computing power to speed up the optimization process. All the communication with these Simulation

Managers is managed by the Simulation & Optimization Orchestrator. On the other hand, the Deployment

Manager which consists of a backend and frontend component can be deployed on a server to cope with large

scale deployment requirements. This also makes the Deployment Tool highly available, allowing the user to

collect information about deployments even when the local PC is not available.

On each device within a swarm, a Deployment Agent as well as the Abstraction Layer is deployed. The

Deployment Agent enables the interaction between the CPS swarm device and the Deployment Manager. The

Abstraction Layer on one hand hides hardware implementation details of the swarm device and provides higher

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 22 of 35

level interface, so that it is easier generate code targeting different platforms. On the other hand, it integrates

a communication framework which offers communication functionality to enable real-time communication

between swarm members as well as between swarm members and the Monitoring & Command Tool.

The Monitoring & Command Tool provides access to the current status of the swarm as well as methods to

control the swarm during runtime. Since publish-subscribe communication mechanism is used for swarm

communication, multiple Monitoring & Command Tools could be present, enabling concurrent monitoring by

multiple people.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 23 of 35

4 Security and Safety Analysis

4.1 Review of Previous Analysis

The initial architecture deliverable (D3.1) described a high-level list of possible threats to the CPSwarm System,

as well as a collection of possible countermeasures which can be applied both concerning software and

hardware security. The project collected some observations on how to integrate these countermeasures into

the CPSwarm Architecture, from the Design Environment through the Workbench components and finally into

the Runtime Environment. The intermediate architecture deliverable (D3.2), updated the security analysis and

proposed planned countermeasures based on the second version of the CPSwarm Architecture. The

Consortium organized two security workshops before M18. The first resulted in an agreement on the exact

features that should be realized, upon SLAB’s proposals of safety and security features. The second workshop

focused on implementation details for a subset of these countermeasures to be included in the first

demonstration of the CPSwarm Runtime Environment. As a result, the previous deliverable D3.2 provided an

analysis of a unified framework for secure communications, the platform hardening, fault and tamper detection,

contingency behaviours, emergency remote control and shutdown, code singing and signature validation and

rights management.

4.2 Final Analysis

During the last phase of the CPSwarm project, the final analysis focuses on the actual vision scenarios and use

cases. The project specified security threats, countermeasures and safety risks accordingly and as a result, fine-

tuned the previous security components. Therefore, a shift of focus emerged towards secure communication,

platform hardening, and emergency shutdown.

The results of the final security analysis will be presented in the upcoming D4.8 deliverable of Work Package 4

that will evaluate the use case scenarios from a security perspective. The document will outline possible

attackers and their goals, visualize them using attack trees and provide potential countermeasures. Most

countermeasures will be generic, and a subset of them will shape the way some components in the architecture

behave. However, most of these solutions are foreseeable and the next chapters describe how these will be

implemented.

4.2.1 Unified framework for secure communications

The vision was to create a unified solution for all the communications which take place while the swarm is

performing its function, including all communications between swarm members and between individual swarm

members and the tools included in the CPSwarm Workbench: the Deployment Tool and the Monitoring and

Command Tool. To make all communications secure, all parties need to be able to authenticate each other and

to exchange messages with strong confidentiality and integrity protection. The Consortium has agreed on

using IP based networking; however, since the project focuses on different vision scenarios, there are multiple

network stacks that the partners aim to support:

 Standard, infrastructure mode wireless network (based on IEEE 802.11 a/b/g/n/ac)

 Cellular network (based on 3G/LTE)

 Time triggered wireless network (based on TTTech proprietary technology)

 Low-rate wireless personal area mesh network (based on IEEE 802.15.4)

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 24 of 35

After considering these requirements (and the requirements derived from our vision scenarios), the Consortium

decided to build a decentralized solution based on the Zyre10 implementation of ZeroMQ11, where swarm

members talk to each other directly, without going through a central authority. While this will in turn requires

more development effort, as there are fewer existing mature solutions, it is an overall better fit for the concept

of a swarm – providing increased fault tolerance and more efficient communications over mesh networks. The

Consortium agreed that the Confidentiality, Integrity and Availability of the assets should be partially protected

by the Communication Library. The message types defined for the project will be protected according to Table

1.

Table 1. Protection goals of message types

Message type Confidential Authenticated

Event

An event has occurred on one of the swarm members that need to be

propagated

Yes Yes

Command

The Monitoring and Command Tool has raised a remote event on a

specific swarm member

Yes Yes

Artefact

The Deployment Tool has sent a software artefact that needs to be

deployed on the swarm member

Yes Yes

Status

The swarm member has made progress deploying the software artefact
Yes Yes

Set / Get

The Monitoring and Command Tool has sent a request to get or set the

value for a global parameter of the behaviour

Yes Yes

Subscribe / Unsubscribe

The Monitoring and Command Tool wants to subscribe to or unsubscribe

from updates on a property

Yes Yes

Telemetry

The swarm member has sent an update for the value of a property to a

subscriber

Yes Yes

Please note that response messages, which only include a confirmation that the operation has completed

successfully are not included, and that the descriptions in italic are only examples for how such a message

might be used.

The Communication Library implements the requirements from the table and therefore covers a great deal of

attack surface and provides sufficient countermeasures for numerous attack scenarios.

The final implemented security features will be based on the libhydrogen12 library using two cryptographic

building blocks: the Curve25519 elliptic curve, and the Gimli permutation. Features include encryption,

authentication and integrity protection along with a key exchange mechanism integrated into the discovery

phase. The secure version of the Communication Library will be an extension of the current basic version of the

library. The end users will be able to switch to the secure version by using a different endpoint class which will

10 https://github.com/zeromq/zyre
11 http://zeromq.org/
12 https://github.com/jedisct1/libhydrogen

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 25 of 35

transparently enable the secure features without any other configuration necessary. The Communication

Library will be described in more detail in the upcoming D7.4 and D7.6 documents.

4.2.2 Platform hardening

Used in two of the CPSwarm use cases, ROS (Robot Operating System) is the project’s primary target software

platform. Furthermore, the pilot partners select hardware platforms most relevant to the target use cases and

vision scenarios. The platform hardening will start with a security analysis of the target platforms and end with

testing and deployment. As a final result, a hardening guide and a optimized image will be delivered for each

platform analysed at the end of the project.

4.2.3 Fault and tamper detection

For the sake of completeness, fault and tamper detection are mentioned as generally necessary features to be

implemented for a final version of CPS in production. However, they are beyond the scope of this project. Fault

detection aims to detect any kind of misbehaviour of the components in order to make it possible to react to

them, while tamper detection focuses on the (external) corruption of input values of the components. Tamper

detection can be done by the use case partners by adding hardware components to their system and defining

software behaviours in case these are triggered. From a security perspective, these new hardware modules can

provide a trusted environment within the devices. In case the devices are tampered with, their assets (and

possibly the mission) can be compromised to cause safety or security breaches.

Figure 10 depicts an abstract model of a swarm member and describes how to handle faults and tampered

data by changing behaviour – see Section 4.2.4.

Figure 10. High-level model of a swarm member

4.2.4 Contingency behaviours

Contingency behaviours – as a safety feature – can be a way to tackle faulty components, such as stopping or

going to a safe place when detecting a hardware failure. They can also be triggered by an Operator, through

the Monitoring and Command Tool or by an external event sensed in the environment. This countermeasure

primarily addresses safety concerns. Different behaviours can be configured to protect tangible and intangible

assets. Designing contingency behaviours will be part of the modelling phase and will be integrated in the

design experience of the high-level state machine defining the behaviour of individual swarm members. The

Modelling Tool will also support the design process of these behaviour changes by including a feature that

makes it possible to model the events that trigger behaviour changes.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 26 of 35

4.2.5 Emergency remote control and shutdown

By switching to emergency remote control mode using the Monitoring and Command Tool, the (authenticated

and authorized) Operator of the swarm can take control over a swarm member manually in any security or

safety critical situation where predefined contingency behaviours might fail, or whenever such control might

be required to perform an action the swarm member is incapable of performing on its own.

Emergency shutdown can be viewed as a specific contingency behaviour that can be triggered by either the

Operator through the Monitoring and Command Tool or by specific events connected to predefined input

ranges. This can be an efficient solution to ensure the safety of the swarm, other objects or even humans in a

critical situation, for example in extreme weather conditions. The partners aim to provide two different types

of emergency shutdown:

 Soft-stop – the swarm members return to the base stations.

 Hard-stop – the swarm members stop at the next safe opportunity.

Apart from being triggered by the Monitoring and Command Tool, a physical switch – an IoT device – can also

be connected to the swarm and can be used to send the emergency shutdown request, thus providing a safe

emergency shutdown feature for a swarm that is operating autonomously. A proof of concept device has been

successfully presented in operation during the M18 demo: a NanoPi NEO Air-based device capable of running

ROS was used to send an emergency shutdown message to a drone via Wi-Fi using the project’s

communication protocol.

4.2.6 Secure initial deployment

During manufacturing, it is paramount to load the necessary certificates and generate public-private key pairs

for the devices in a trusted environment. The process of key generation and key exchange will be done

according to the Ironhouse13 pattern using CurveZMQ14. The workflow for setting up a device (Agent) and

register it with the Deployment Tool (Server) is as follows:

1. The deployment administrator authenticates (with credentials) and asks for a token from the Server over

the RESTful API or GUI

2. The deployment administrator starts the Agent on device, generating a key pair locally.

3. The deployment administrator starts the Agent on device with the token as a process environment

variable.

4. The Agent generates a key pair and contacts the Server's RESTful API, submitting the token (to

authenticate) and its public key for CurveMQ.

5. The Server invalidates the token so it can no longer be used.

6. The Agent contacts the Server over the network. They establish a secure channel using CurveZMQ.

The steps from step 2 are automated. The token used has a sufficiently high entropy (48 bits) to resist any

brute-force hacking attempts.

4.2.7 Code signing and signature validation

This security countermeasure addresses the Deployment Tool. The code generated by the Code Generator

needs to be packaged and signed by the Deployment Manager and then it needs to be validated before

execution by the Deployment Agent. The signed package could contain additional restrictions, such as

specified target platforms, expiry and downgrade protection. As code signing is a possible countermeasure for

specific attacks regarding the upgrade procedure, this feature will be addressed in more detail in D4.8.

13 https://github.com/pebbe/zmq4/blob/master/examples_security/ironhouse.go
14 http://curvezmq.org/

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 27 of 35

4.2.8 Rights management

Being able to authorize entities that can affect the operation of the swarm adds an extra layer of security to

the system. Revoking rights from compromised swarm members can isolate those members and prevent a

breach in the whole swarm. Moreover, limiting rights to certain operations can minimize the possible damage

done by a compromised swarm member. Authorization can enforce the separation of different maintenance

and monitoring tasks of the operators, such as deployment, monitoring, configuration and remote control.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 28 of 35

5 Scalability Analysis

5.1 Review of Previous Analysis

In D3.1, the importance of scalability within the CPSwarm project was discussed. In particular, two aspects

which are likely to cause scalability issues and performance bottlenecks were analysed: simulation and

deployment.

For simulation, in order to find out the proper algorithm for a swarm via the evolutionary approach defined in

CPSwarm, a large number of simulation iterations are necessary (often hundreds, thousands or tens of

thousands of iterations) to constantly test the performance of a specific candidate. With only a single computer,

it could take a very long time before a proper result is found. To tackle this problem, the initial analysis indicated

that a solution with distributed computers each running simulation should be envisioned within the CPSwarm

system.

Besides simulation, deployment is another aspect which requires careful design in terms of scalability. When

dealing with a large number of target devices, the typical approach in which developers deploy a newly

updated program manually to each single device is extremely repetitive and error-prone. To solve this problem,

an update system similar to the Over-The-Air (OTA) update mechanism in modern smart phones was created

in CPSwarm.

5.2 Final Analysis

5.2.1 Simulation scalability analysis

The final design of the Simulation and Optimization Environment has been presented in D6.2. The deliverable

contains a detailed scalability analysis of the proposed solution and shows how the scalability issues identified

in the previous version of the architecture (Micha Rappaport, 2018) have been solved. The following results

have been obtained:

1) Leveraging XMPP for the communication among the components. Core XMPP features15 include

unique identifiers, presence mechanism and one-to-one chat messages; or some of the protocol

extensions, like file transfer16 and publish/subscribe17. This enables us to leverage the solid scalability

features provided by the protocol18, 19.

2) The introducion of a scalable discovery mechanism for the distributed Simulation Managers where the

Simulation Managers announce themselves to the SOO when they are available, leveraging the XMPP

presence mechanism.

3) In the approach described in D6.1, the evaluation of the controller was conducted within the

Optimization Tool based on the continuous exchange of messages with the simulation environment

(centralized approach). This increased the number of messages exchanged and decreased

performance. To address this issue, the final version sends the controller to the Simulation Manager

and evaluates it locally within the simulator. As only the controller and fitness score are transferred,

15 https://xmpp.org/rfcs/rfc6120.html
16 https://xmpp.org/extensions/xep-0096.html
17 https://xmpp.org/extensions/xep-0060.html
18 https://www.igniterealtime.org/about/OpenfireScalability.pdf
19 https://www.isode.com/whitepapers/xmpp-performance-constrained.html

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 29 of 35

the number of messages exchanged is much more limited, thus increasing performance (distributed

approach).

The analysis presented in D6.2 demonstrates that the performance of the distributed approach is better that

of the centralized one in most scenarios. Furthermore, the partners have conducted an analysis of the

performance of the approach as the number of Simulation Managers increases. Figure 11 shows the resulting

optimization time with different number of Simulation Managers used. The chart shows measurements in line

with the theoretically calculated performance. The performance scales well with the number of Simulation

Managers. The performance improvement rate is minimized beyond 24 Simulations Managers, possibly related

to the limited number of cores (24) available on the test cluster.

Figure 11. Scalability with number of Simulation Managers of the optimization time of the distributed approach
for varying simulation lengths. In this figure, the Simulation Managers are referred to as Simulation Servers

(SSs).

5.2.2 Deployment scalability analysis

The CPSwarm Deployment Tool is built on top of the initial OTA update concept. This provides tremendous

benefit for deployment on multiple devices, relieving users from the burden of direct software deployment.

However, an appropriate set of technologies are required to optimally deploy software on resource-

constrained swarm devices.

The Deployment Tool’s update system is based on a publish-subscribe messaging pattern tailored for the

management of a large number of devices using a simple interface provided by the Deployment Manager. The

publish-subscribe messaging pattern enables scalable update propagation and monitoring in contrast with a

request-reply pattern that relies on frequent polling. Furthermore, it saves network traffic by multicasting

packets at the edge of a CPS network using the Pragmatic General Multicast20 protocol. This way, the

20 https://en.wikipedia.org/wiki/Pragmatic_General_Multicast

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 30 of 35

Deployment Manager sends a single copy of messages to a remote network which are then multicasted locally

to designated targets.

The Deployment Manager is designed with concurrency in mind, however as a centralized instance, it is still

subject to host environment limits. To overcome scaling issues when dealing with thousands of devices, the

Deployment Manager could benefit from a broker-based architecture with a simple load-balancing scheduler.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 31 of 35

6 Conclusion

This deliverable presented the final system architecture design of CPSwarm. The project has evolved

significantly since the initial phases, leading to discovery of new challenges and potential solutions. As a result,

the architecture design went through an iterative process, reaching the final form that is documented in this

deliverable. This document provided a high-level overview of the technical aspects of the CPSwarm

architecture, leaving fine-grained technical details to the technical deliverables of the individual project tasks.

The final architecture paves the way for future development and integration activities in Task 3.3 - Continuous

System Integration. Work in the following months will focus on component integration. The final status of

CPSwarm Workbench and associated tools will be reported in deliverable D3.6.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 32 of 35

Acronyms

Acronym Explanation

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARGoS Autonomous Robots GO Swarming

CPS Cyber Physical System

CRUD Create, Read, Update, and Delete

DDS Data Distribution Service

DNS Domain Name System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

MARTE Modelling and Analysis of Real-Time Embedded Systems

MQTT Message Queuing Telemetry Transport

OASIS Advancing Open Standards for the Information Society

OT Optimization Tool

OTA Over-The-Air

ROS Robot Operating System

SASL Simple Authentication and Security Layer

SDF Simulation Description Format

SITL Software-in-the-loop

SM Simulation Manager

SOO Simulation and Optimization Orchestrator

SOTA Structure Oriented Test and Analysis

STDR Simple Two-Dimensional Robot Simulator

SysML System Modelling Language

TLS Transport Layer Security

V-REP Virtual Robot Experimentation Platform

VTOL Vehicle Take-off and Landing

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

ZMQ ZeroMQ

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 33 of 35

List of Figures

Figure 1. Final architecture design .. 6
Figure 2. CPSwarm Launcher internal structure .. 7
Figure 3. Screenshot of the CPSwarm Launcher prototype ... 8
Figure 4. Hierarchical illustration of the core tasks of the Modelling Tool ... 9
Figure 5. Components of the Optimization Tool.. 13
Figure 6. Code Generator role in CPSwarm workbench .. 14
Figure 7. Components of the CPSwarm Deployment Tool .. 15
Figure 8. Information flow between components within the CPSwarm system ... 18
Figure 9. CPSwarm deployment view. This figure borrows symbols from UML but it does not strictly follow the UML

specification. .. 21
Figure 10. High-level model of a swarm member ... 25
Figure 11. Scalability with number of Simulation Managers of the optimization time of the distributed approach for

varying simulation lengths. In this figure, the Simulation Managers are referred to as Simulation Servers (SSs). 29

List of Tables

Table 1. Protection goals of message types ... 24

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 34 of 35

Reference

Ahmed, H., & Glasgow, J. (2012). Swarm intelligence: Concepts, models and applications. School of Computing,

Queen' University, Canada.

Binitha, S., & Sathya, S. (2012, 2). A survey of bio inspired optimization algorithms. International Journal of

Soft Computing and Engineering, pp. 137-151.

Blum, C., & Li, X. (n.d.). Swarm intelligence in optimization.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (2008). Swarm intelligence: from natural to artificial systems. Oxford

University Press.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013, 7). Swarm robotics: a review from the swarm

engineering perspective. Swarm Intelligence, pp. 1-41.

Camazine, S., Franks, N., Sneyd, J., Bonabeau, E., Deneubourg, J., & Theraula, G. (2001). Self-organization in

Biological Systems. Princeton University Press.

Floreano, D., & Mattiussi, C. (2008). Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies.

MIT Press.

Garnier, S., Gautrais, J., & Theraulaz, G. (2007, 1). The biologicl principles of swarm intelligence. Swarm

Intelligence, pp. 3-31.

Green, D., Aleti, A., & Garcia, J. (2017). The nature of nature: Why nature-inspired algorithms work.

Hamann, H., & Schmickl, T. (2012). Modelling the swarm: Analysing biological and engineered swarm

systems. Mathematical and Computer Modelling of Dynamical Systems, pp. 1-12.

Hassanien, A., & Alamry, E. (2015). Swarm Intelligence: principles, Advances and Applications. CRC Press.

IEEE. (2011). ISO/IEC/IEEE 42010:2011, Systems and software engineering — Architecture description.

Kolling, A., Walker, P., Chakraborty, N., Sycara, K., & Lewis, M. (2016). Human interaction with robot swarms: A

survey. IEEE Transactions on Human-Machine Systems, pp. 9-26.

Krause, J., Cordeiro, J., Parpinelli, R., & Lopes, H. (2013). A survey of swarm algorithms applied to discrete

optimization. Swarm Intelligence and Bio-Inspired Computation.

Lim, C. J., & Dehuri, S. (2009). Innovations in Swarm Intelligence. Springer.

Micha Rappaport, D. C. (2018). Distributed Simulation for Evolutionary Design of Swarms of Cyber-Physical

Systems. ADAPTIVE 2018, (p. 6).

Parpinelli, R., & Lopes, H. (2011). New inspirations in swarm intelligence: A survey. International Journal of

Bio-Inspired Computation.

Shranz, M., Umlauft, M., Rappaport, M., & Elmenreich, W. (2018). A classification of basic swarm behaviors

and their application in cyberphysical systems. Swarm Intelligence.

Deliverable nr.

Deliverable Title

Version

D3.3

Final System Architecture & Design Specification

1.0 - 10/07/2019

Page 35 of 35

Yang, X., Cui, Z., Xiao, R., Gandomi, A., & Karamanoglu, M. (n.d.). Swarm intelligence and bio-inspired

computation: theoriy and application. Elsevier.

Yang, X., Deb, S., Zhao, Y., Fong, S., & He, X. (2017). Swarm intelligence: past, present and future. Soft

Computing.

