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1 Executive summary 

This document, namely “D4.6 Final swarm modeling library”, is a deliverable of the CPSwarm project, funded 

by the European Comission’s Directorate-General for Research and Innovation (DG RTD), under its Horizon 

2020 Research and innovation program (H2020), reporting the final results of the activities carried out by WP4 

– Models and algorithms for CPS Swarms, Task 4.3. The main objective of the CPSwarm project is to develop a 

workbench that aims to fully design, develop, validate and deploy engineered swarm solutions. More 

specifically, the project focuses on modeling of swarms of CPSs, implementing and optimizing the 

corresponding swarm intelligence algorithms, driven by WP4.  

 

Deliverable D4.6 is the final document in the WP4 deliverables and thus, builds on previous ones in this series 

(D4.4 – Initial swarm modeling library and D4.5 – Updated swarm modeling library). In this version we describe 

the final structure of the behavior library that consists of a hierarchical formalization including Swarm Functions, 

Swarm Behaviors and Complex Behaviors. Furthermore, we describe updates for the use cases “Search and 

Rescue” and “Logistics” in terms of state-machine design. The use case “Automotive” will be described in more 

detail: the state-machine design for the use case and the algorithmic selection for individual states.  
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2 Introduction 

D4.6 – “Final swarm modeling library” is a public document defining the publicly available swarm models and 

swarm algorithms found till CPSwarm M34. 

 

LAKE, as deliverable leader, initially drafted the document, which has subsequently been extended by all 

partners’ contributions. Deliverable D4.6 is the final document in the WP4 deliverables and thus, builds on 

previous ones in this series (D4.4 – Initial swarm modeling library and D4.5 – Updated swarm modeling library). 

In this version we describe the final structure of the behavior library and all updates for the individual use cases 

in terms of state machine design and algorithms. 

 

2.1 Document organization 

The remainder of this deliverable is organized as follows:  

Section 3 describes the final behavior library structure, state types and events. Section 4 describes the individual 

use cases (logistics, automotive, search & rescue) with the final state machines. Section 5 draws the conclusion. 

2.2 Related documents 

ID Title Reference Version Date 

[D4.4] Initial Swarm Modeling Library D4.4 1.0 M10 

[D4.5] Updated Swarm Modeling Library D4.5 1.0 M22 

[D2.2] Final Vision Scenarios and Use Case Definition D2.2 1.0 M16 

[D7.1] Initial CPSwarm Abstraction Library D7.1 1.0 M18 

[D7.2] Final CPSwarm Abstraction Library D7.2 1.0 M32 

[D8.4] Final Swarm Logistics Demonstration D8.4 1.0 M36 

[D8.6] Final Automotive Demonstration D8.6 1.0 M36 
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3 Behavior Library 

The behavior library contains all software models of the CPSs that allows them to perform complex swarm 

behaviors. It is a library of modular, reusable behaviors that are hierarchically structured and assembled in finite 

state machines (FSMs). Layering the behaviors in a hierarchy with different degrees of abstraction allows a 

separation of concerns. It has the benefit that often recurring behaviors and functionalities need to be defined 

only once. This avoids redundancies in design and implementation. These behaviors are therefore defined and 

implemented only once but can be used in different FSMs. They can be adapted to serve as starting point when 

designing new behaviors. This significantly reduces the effort to develop new CPS applications by letting 

developers reuse existing solutions and focus on application-specific problems. We propose the library 

structure shown in Figure 1 where the colors represent the different behaviors types that will be explained in 

more detail in the following. 

These libraries are structured according to the level of hardware abstraction. The Swarm Library works 

independent of the underlying hardware. It provides the complex behaviors modeled as FSMs together with 

the swarm behaviors and swarm functions. It makes use of a communication library that provides an interface 

for communication between CPSs. The Abstraction Library abstracts away the hardware specifics. It provides 

functions that are related to the hardware based on hardware specific drivers and functionalities to access the 

sensors and actuators. More details on the Abstraction Library can be found in Deliverable D7.1 and D7.2. 

3.1 State Machines 

A mission for a swarm of CPSs requires typically many different behaviors to be executed by the CPSs to 

complete the different tasks of the mission. These individual behaviors can be simpler to describe and 

implement, and are regarded to be atomic during modeling. Combining these simple behaviors into more 

complex behaviors allows to achieve complex missions. A commonly used approach for this are FSMs where 

the states correspond to simple behaviors and the FSM describes a complex behavior. FSMs are well suited for 

behavior modeling because (i) they allow a visual representation that is easily understood by the human 

modeler, (ii) they can be formally described to allow automatic code generation, and (iii) allow a modular 

design which enables the reuse of behaviors. Each CPS can thus execute a FSM while always being in a defined 

state which can vary between CPSs. Hence, even in a homogeneous swarm of CPSs, complex swarm 

configurations can emerge where CPSs take on different roles based on the interactions between them.  

3.1.1 State Types 

The behavior state machine model is based on the UML behavior state machines. Specifically, the simple 

behaviors are modeled by simple states and the complex behaviors are modeled using composite or 

submachine states. Composite states allow a state to be modeled by another state machine whereas 

submachine states allow to encapsulate generic state machines that can be reused within more than one state. 

 
Figure 1: The behaviour library structure. 
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In the context of CPS swarm behaviors, we propose four different behaviors types (the color codes refer to the 

ones used in Figure 1): 

 Complex behaviors (red): Behaviors that are defined by a state machine of simple behaviors, e.g., SAR. 

 Swarm behaviors (green): Simple behaviors that execute a specific swarm algorithm exhibiting an 

emergent swarm behavior, e.g., aggregation. 

 Swarm functions (blue): Simple behaviors that execute a single function including the interaction 

between CPSs, e.g., task allocation. 

 Hardware functions (yellow): Simple behaviors that execute a single function including hardware 

interaction, e.g., moving to a given location. 

The behaviors are formalized by a unique name, a short description of the behavior, the behavior type, and the 

inputs and outputs of the behavior. 

3.1.2 Hierarchy 

To allow a clean and structured design of the behavior state machines, we propose to use hierarchically nested 

states defined in the UML standard. The organization as a hierarchy 𝐻 using a set of levels 𝐿𝑖 ∈ 𝐻allows to 

consider different levels of detail at different hierarchy levels. An example with two levels 𝐻 = {𝐿1, 𝐿2}is shown 

in Figure 2 where each color represents a different behavior type. In this example, level 𝐿1 represents the 

highest level of the hierarchy, and considers parallel processing. Some behaviors need to be executed in parallel 

such as navigating while performing collision avoidance. Each process performs a complex behavior in parallel 

that is necessary for accomplishing the mission. Next, each complex behavior is assembled by using FSMs in 

the second level 𝐿2 of the hierarchy. Therein, each state corresponds to a simple behavior such as swarm 

behaviors, swarm functions, or hardware functions, where transitions are triggered by dedicated events. The 

number of levels is dependent on the design strategy of the modeler and allows to model different levels of 

abstraction. 
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3.1.3 Events 

The transitions between behavior states are triggered by events that can either originate locally, e.g., from 

sensor readings or behavior rules or remotely, e.g., from communication between CPSs, or from a command 

and control station. Exchanging events between CPSs enables the coordination of the swarm behaviors. Events 

are processed locally and autonomously by each CPS as defined in the behavior FSMs. This allows 

heterogeneous CPSs to influence each other's behavior changes by exchanging events. In complex behaviors, 

events can either trigger a state change of the sub FSM or force the complex behavior itself to terminate and 

thereby also terminate the currently running sub behavior. Events are formalized by a unique ID, a timestamp, 

and a unique ID of the sender. Furthermore, events can have data associated with them in form of typed key-

value pairs. This data is passed to the behavior using special inputs that are bound to the data in the event in 

order to supply constant input values to the behavior while the state is active. This binding is done on a per-

transition basis, where an association between the data of the incoming event and the special inputs of the 

behavior can be made. Default values for the data can be defined in order to supply values for data missing in 

the event. When an event is triggered, the data of the outgoing event is handled similarly to how incoming 

 
                           

                           Figure 2: The behavior model hierarchy. 
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events are treated. The outputs taken from the behavior are bound to the data of the outgoing event. This 

binding is also done on a per-transition basis. Constant values can also be supplied for any of the data. 

3.2 Swarm Library 

The Swarm Library contains the swarm behaviors executed by the individual CPSs leading to the global swarm 

behavior. They are platform independent and thus can be reused among different types of CPSs. The swarm 

library is structured into three sub libraries in accordance with the previously introduced swarm behaviors. First, 

the Complex Behaviors library contains the FSM that model the complex, high-level mission behaviors such as 

SAR. They are defined as UML composite or submachine states. Second, the Swarm Behaviors library contains 

individual swarm behaviors that exhibit an emergent behavior. Typically, such swarm behaviors are hand 

crafted based on biological inspiration or generated automatically, e.g., using evolutionary optimization. 

Examples are flocking, phototaxis, or collective transport. They are defined as UML simple states to be used in 

the complex behavior FSMs. Third, the Swarm Functions library contain simple swarm related tasks. These are 

tasks that do not lead to an emergent behavior but rather are used to enable the functioning of the swarm 

behaviors. Examples are exchange of position information, task allocation, or computing the average velocity 

of the swarm. They are defined as UML simple states to be used in the complex behavior FSMs. 
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4 Use Cases  

This section describes the updates on the related use cases of their state machines. 

4.1 Logistics 

The Logistics use case envisages a scenario where two classes of robots, scouts and workers, assist in moving 

boxes in a warehouse. The scout robots, equipped with a QR-code reading camera, rove around the warehouse 

space searching for boxes. Once a box is located, the scout notifies all workers robots of its location. Idle 

workers robots bid for the job of transporting the box to a specified location based on their current location, 

i.e. the distance to the box, and their remaining battery level. The selected workers moves to the box, 

autonomously navigating around obstacles, lifts it using its elevator mechanism, moves to the destination, sets 

the box down and returns to an idle state. The entire scenario in its final version is described in “D8.4 – Final 

Swarm Logistics Demonstration” (M36). 

 

 

Figure 3 1st Level State Machine 
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Figure 5 Scouts 

Figure 4 Workers 
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Related to this use case it is important to highlight the addition of the human in-the-loop feature by the 

implementation of a human presence alarm that will be given through the image processing of an external 

camera. The details of the hardware are also present in D8.4. 
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4.1.1 Optimization of Scouting Behaviour 

In Figure 4, several different behaviors may be used as implementations for scouting during the discovery of 

boxes. To demonstrate the optimization components in the CPSwarm Workbench, a random walk algorithm is 

provided. While following this behaviour, the Scout robot picks a random direction and “walks” until it 

encounters a box, the edge of the operating space or a distance threshold has been exceeded. It then picks a 

new random direction and continues walking as before. As the distance parameter affects the effectiveness of 

the Scout coverage of operating space, it may be optimized for the specifics of the scenario. Essentially the 

optimization tool varies the parameter and assesses its performance by applying an objective function to a 

large number of simulation runs thus estimating the parameter’s fitness. Within the CPSwarm Workbench this 

is implemented by a series of interactions between the Simulation and Optimisation Orchestrator (SOO), the 

Optimisation Tool (OT) and several Simulation Managers (SMs). As illustrated in Figure 6, Following an initial 

setup phase where the components are configured correctly, the SOO instructs the OT to start an optimisation. 

Using simulations run by individual SMs, the OT tests different parameter values and attempts to pick an 

optimum value, which it then returns to the SOO and in turn, to the user. This optimised behaviour may then 

be deployed to real hardware. The individual components are loosely coupled using a central XMPP server. 

 

Figure 6 – An Overview of the CPSwarm Optimisation Process 
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4.2 Automotive 

In summary, the automotive use case can be described as follows (find all details in D8.6 - Final Automotive 

Demonstration): The aim is to form platoons of connected freight vehicles. The leading vehicle prescribes the 

actions and decisions (e.g., navigation, decision on take-over maneuvers, sequencing maneuvers, lane change) 

for the follow-up vehicle(s) that will make use of the leading vehicle's actions. The follow-up vehicle will need 

full autonomous driving capability and environmental awareness. However, they will follow the leading vehicle 

in a preset distance even when they have to make decisions, e.g., lane change maneuver on their own due to 

an emergency situation, or leaving the platoon if the route to the destination deviates). The follow-up vehicles 

will also take over full control in case the lane change needs to be interrupted for the complete swarm due to 

other traffic prohibiting to change lanes. 

For the platooning algorithms in the automotive use case, we defined following state machine (Figure 7). 

 

 

  

Figure 7 Automotive Use Case Swarm Mission Level 1 
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The second level of the state machine can be seen in Figure 8. 

 

For the algorithmic part we consider directed graphs only and denote them with 

 set of edges 𝐸 

 set of vertices 𝑉 

 For each 𝑒 ∈ 𝐸: corresponding edge weight is 𝑐𝑒 

4.2.1 Shortest Path Algorithm 

The shortest path algorithm is an algorithm to find a path between two vertices to minimize the sum of the 

weights of the edges. This algorithm is a crucial and time-relevant part of the behavior implementation. 

Therefore different candidate algorithms are to be investigated, together with their advandages, disadvantages 

and computational complexity O.  

 

4.2.1.1 Breadth-First Search 

Breadth first1 traversal visits all shallower nodes before visiting deeper nodes. 

                                                
1 Skiena, S. S. (1998). The algorithm design manual: Text (Vol. 1). Springer Science & Business Media. 

Figure 8 Automotive Use Cases Complex Behavior 1 
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Example - Consider the following tree 

Apply breadth-first traversal to it would visit nodes in the order: 1, 2, 3, 4, 5, 6 using following pseudo code 

 

function BreadthFirstTree(headNode) { 1 
  Q := empty queue of nodes 2 
  add headNode onto Q 3 
  while Q is not empty: 4 
    n := node on front of queue     5 
    remove node on front of queue 6 
    visit n 7 
    for each child c of n: 8 
      add c to Q 9 
    end for 10 
  end while 11 
}12 

 

In terms of unweighted graphs, the algorithm may be applied to graphs by maintaining a table of nodes that 

have already been visited. 

 
function BreadthFirstGraph(headNode) { 1 
  Q := empty queue of nodes 2 
  V := empty set of nodes 3 
  add headNode onto Q 4 
  while Q is not empty: 5 
    n := node on front of queue     6 
    remove node on front of queue 7 
    visit n 8 
    for each linked node l of n: 9 
      if l in not in V: 10 
        add l to Q 11 
        add l to V 12 
      end if 13 
    end for 14 
  end while 15 
}16 
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Weighted graphs may be supported by adding dummy nodes as demonstrated in the following example: 

 

Complexity 

 Time complexity 

O(|V|+|E|), where V is the number of vertices, E the number of edges. 

Note: each vertex is enqueued and dequeued once, each edge is scanned once. 

 Space complexity 

O(|V|) 

Up to |V| vertices may have to be enqueued 

 

4.2.1.2 Dijkstra 

The Dijkstra's Algorithm (also called Uniform Cost Search algorithm) has the goal to find the least cost path 

from the initial node to a target node. Instead of exploring all possible paths equally, it favors lower cost 

paths. It runs on a weighted graphs, but can be used either for directed or undirected ones. At the beginning, 

it starts with the initial node and the target node [1, 2, 3, 4]. 

Example (extracted from [5]): 

Converted into 
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At the very beginning we initialize the initial node V with zero, all others with infinity. We have a list to track 

all the nodes we visited. 

 

As we have only visited A, we check the neighboring nodes B, C and E. For each vertex we calculate: distance 

to the current node + distance from current node to neighbor. In this example for the nodes 

B: 0+4=4 

C: 0+3=3 

E: 0+7=7 

If this value is less than the current tentative distance, then we replace it with this newly calculated value.  
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In a next step we visit the vertex having the lowest cost value, in our example this is C (it gets part of the list 

of the visited vertices). Again, we update the values for the neigboring vertices: 

B: 3+6=9 

D: 3+11=14 

E: 3+8=11 

As only vertex D shows a lower distance value (14<infinity) we update only this vertex.  

The same procedure is repeated with all the vertexes that have a low weight cost. After C we visit B, from B 

we go to D and from D to the target node F. 

 

The Dijkstra algorithm’s pseudo code is the following: 

 

function Dijkstra(Graph, source): 1 
  for each vertex v in Graph: //initialization 2 
    dist[v] := infinity //initial distance from source to vertex v is set to infinite 3 
    previous[v] := undefined //previous node in optimal path from source 4 
  end for 5 
  dist[source] := 0 //distance from source to source 6 
  Q := the set of all nodes in Graph //all nodes in the graph are unoptimized  are in Q 7 
  while Q is not empty: //main loop 8 
    u := node in Q with smallest dist[ ] 9 
    remove u from Q 10 
     for each neighbor v of u: //where v has not yet been removed from Q 11 
      alt := dist[u] + dist_between(u, v) 12 
      if alt < dist[v] //relax (u,v) 13 
        dist[v] := alt 14 
        previous[v] := u 15 
      end if 16 
     end for 17 
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  end while 18 
  return previous[ ]19 
 

Complexity 

 Time complexity 

o Using a binary heap: O((|E|+|V|)log(|V|)) 

 Space complexity 

o Using a binary heap: O(|V|) 

o Up to |V| vertices may have to be stored 

Advantages 

1. Uniformed Algorithm: Dijkstra is an uninformed algorithm. This means that it does not need to know the 

target node beforehand. For this reason it's optimal in cases where you don't have any prior knowledge of 

the graph when you cannot estimate the distance between each node and the target. 

2. For multiple target nodes: Since Dijkstra picks edges with the smallest cost at each step it usually covers a 

large area of the graph. This is especially useful when you have multiple target nodes but you don't know 

which one is the closest. 

Disadvantages 

1. Fails if weights are negative: If we take for example 3 nodes (A, B and C) where they form an undirected 

graph with edges: AB = 3, AC = 4, BC=-2, the optimal path from A to C costs 1 and the optimal path from A 

to B costs 2. If we apply Dijkstra's algorithm: starting from A it will first examine B because it is the closest 

node. and will assign a cost of 3 to it and therefore mark it closed which means that its cost will never be 

reevaluated. This means that Dijkstra's cannot evaluate negative edge weights. 

4.2.1.3 A* 

A* is a modification of Dijkstra’s Algorithm that is optimized for a single destination. Dijkstra’s Algorithm can 

find paths to all locations; A* finds paths to one location, or the closest of several locations (in contrast to 

Dijkstra, A* uses an additional heuristic that tells how far we have to go, e.g., Euclidean distance + the way 

from the initial node (as in Dijkstra)). It prioritizes paths that seem to be leading closer to a goal. This useful 

especially in environments with obstacles [6, 7, 8].  

g(n)…exact cost of the path from the starting point to any vertex n 

h(n)…heuristic estimated cost from vertex n to the target 

In every step it examines the vertex n that has the lowest f(n)=g(n)+h(n) 

Initialize the open list 1 
Initialize the closed list 2 
put the starting node on the open  3 
list (you can leave its f at zero) 4 
while the open list is not empty 5 
    a) find the node with the least f on  6 
       the open list, call it "q" 7 
    b) pop q off the open list 8 
    c) generate q's 8 successors and set their  9 
       parents to q 10 
    d) for each successor 11 
        i)   if successor is the goal, stop search 12 
             successor.g = q.g + distance between successor and q 13 
             successor.h = distance from goal to successor (This can be done using many way 14 
             we will discuss three heuristics- Manhattan, Diagonal and Euclidean Heuristics) 15 
             successor.f = successor.g + successor.h 16 
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        ii)  if a node with the same position as  17 
             successor is in the OPEN list which has a lower f than successor, skip this  18 
             successor 19 
        iii) if a node with the same position as successor  is in the CLOSED list which has  20 
             a lower f than successor, skip this successorotherwise, add  the node to the  21 
             open list 22 
       end for 23 
    e) push q on the closed list 24 
end while25 
 

Advantages 

1. Heuristic: A* expands on a node only if it seems promising. It's only focus is to reach the goal node as 

quickly as possible from the current node, not to try and reach every other node 

2. Complete: A* is complete, which means that it will always find a solution if it exists. 

3. Can be morphed into other algorithms: A* can be morphed into another path-finding algorithm by simply 

playing with the heuristics it uses and how it evaluates each node. This can be done to simulate Dijkstra, Best 

First Search, Breadth First Search and Depth First Search. 

Disadvantages 

1. Not useful if you have many target nodes: If you have many target nodes and you don't know which one is 

closest to the main one, A* is not very optimal. This is because it needs to be run several times (once per 

target node) in order to get to all of them. 

Complexity 

 Time complexity 

o Depends on the heuristic, e.g., if the search space is a tree O(log h*(x)) 

 Space complexity 

o Roughly the same as all other graph search algorithms 

 

4.2.1.4 Bellman-Ford 

Starting at a particular node in a directed graph, the Bellman-Ford algorithm computes the shortest paths to 

all other nodes by progressively improving approximations [9, 10, 11]. 

 

function BellmanFord(vertices, edges, source) 1 
   // set up distance table  2 
   distance := array 3 
   for each vertex v in vertices: 4 
       distance[v] := inf 5 
   end for 6 
   distance[source] := 0 7 
   // iteratively improve results 8 
   for i from 1 to size(vertices)-1: 9 
       for each edge (u, v) with weight w in edges: 10 
           if distance[u] + w < distance[v]: 11 
               distance[v] := distance[u] + w 12 
           end if 13 
       end for 14 
   end for 15 
   return distance16 
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Complexity 

 Time Complexity 

O(|V| * |E|) where |V| is the number of vertices and |E| the number of edges in the graph 

 Space Complexity 

O(|V|) where |V| is the number of vertices in the graph 

 

4.2.2 Select Role 

1. Decide on the role (leading or following vehicle) 

 "Physical" first 

o Auctioning 

o Priorities 

o Platoon size 

 Consensus: 

For applying such an algorithm, the main goal of platooning should be clear. 

For example: in [1],  Leader-Following consensus algorithm has been used in Vehicle platoons: 

The goal is to maintain a fixed distance of the so-called ''String Stability'' 

Each vehicle can share information with the neighbours, and with the Leader as well if it is a 

neighbour of the leader ( in case of having a direct path, the leader information could be passed 

onto followers then a cost function is applied to maintain a fixed distance   

Generally, to decide if a vehicle should act a new leader, or just to follow the other one, or to do 

nothing (keep leading on its own) is highly related to the exchanged information in the model and 

the corresponding cost function as well. another example of using a consensus algorithm can be 

found in [2] ' consensus-based approach for platooning with inter-vehicular communications'. Also, 

the main goal was to regulate speed and relative distance of each vehicle with respect to its 

predecessor and the leading vehicle. 

References  

- [1] Ruan, Y. and Jayaweera, S.K., 2014, October. Leader-following consensus in vehicle 

platoons with an inter-vehicle communication network. In 2014 8th International Conference 

on Telecommunication Systems Services and Applications (TSSA) (pp. 1-6). IEEE. 

- [2] Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M. and Cigno, R.L., 2015, April. A 

consensus-based approach for platooning with inter-vehicular communications. In 2015 IEEE 

Conference on Computer Communications (INFOCOM) (pp. 1158-1166). IEEE. 

 

2. Cooperative Path Finding 

2a. Exchange costs (individual algorithms) 

2b. Recalculate shortest path algorithm (individual algorithms) 

4.2.3 Follow Lead 

Follow the lead, until the recalculated shortest path defined to leave the platoon 

4.3 Search & Rescue 

The first design of the state machines for CPSs involved in the SAR scenario was described in D4.5. In the 

following period the focus was directed towards the enrichment of the modeling facilities to realize more 

complex state machines. In particular, the attention was focused in improving aspects related to the 

management of events received by a specific CPS. 

https://wiki.repository-pert.polito.it/xwiki-enterprise-web-7.4.5/wiki/cpswarm/view/Main/WP8+Use+Cases+Implementation/Car+Convoy%3A+State+Machine/Consensus+in+Vehicle+Platoons+/
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Before explaining the result of this activity, taking a step back to review some concepts related to the event 

management in the CPSwarm context is useful. 

 

4.3.1 Events management 

An event is anything that happens or take place during the execution of a mission. The main purpose of an 

event is to trigger a reaction from one or more members of the swarm. Generally, this reaction consists in a 

change of the current behavior of the CPS. 

During the first period of the project threee different source of events have been identified: 

 Swarm member: an event can be received from other swarm members. 

 Monitoring & Command Tool: this case can be considered an extension of the previous one as, in the 

current implementation, the tool works as one of the members of the swarm. 

 The CPS itself: event can be arisen internally to the single swarm member. In this case, the source can 

be identified among one of the sensors and actuators (through the Abstraction Library) or one of the 

high-level functionalities and behaviors that are simultaneously running on board of the CPS. 

Independently from the source, the reaction to a specific event inside the CPS can be managed at different 

level of our software architecture: 

 Abstraction Library level: the event can be processed by one of the components that are part of the 

Abstraction Library. For instance, if the event corresponds to a specific request to one of the actuators 

on board of the CPS, the related ROS component interfacing with the hardware will manage that 

request. 

 Swarm Library level: in this case, the event is managed by one of the functionalities provided by the 

Swarm Library. The specific function will be able to read the data that are part of the event and execute 

any computations based on those data. Furthermore, this event can cause the drop-down generation 

of other events inside the CPS. 

In both cases, the reaction to a specific event was expected by the developer that was implementing that 

particular hardware driver or swarm functionality. To overcome the limitations of such approach, the Finite 

State Machine Modeling was extended with the event monitoring at the state machine level. In fact, each state 

machine corresponds to a single process running such as any other ROS component executing on the CPS.  

In the previous version of this deliverable, this capability was modeled using a dedicated Event Monitoring 

state that was responsible to process all kind of events (as can be seen in Fig.). Subsequently, this concept has 

been better detailed to satisfy the requirement needed to allow the automatic generation of the state machine 

through the CPSwarm Code Generator.  

This improved technique consists in having a new dedicated Monitoring State running in parallel with a 

specified executing state. This new state will be in charge of listening to a single specific event and after the 

reception, will stop the executing task allowing the transition to another state. Associated to each specific state 

there may be one or many Monitoring States. One for each event of interest. 

The Monitoring State has been used into the updated version of the state machines for both drones and rovers. 

More details on the new FSM will be presented in the following section. 

 

4.3.2 Updated State Machines 

In this section the main updates applied to the FSM for SAR scenario will be detailed. The mission that is 

actually considered is just an extension of the previous one. Many parts of these improvements were possible 

using the previously described Monitoring State. 

 

4.3.2.1 1st Level – General State Machine 

The main change from the last version (D4.5 – Updated Swarm Modeling Library) of this FSM is the deletion of 

the Event Monitoring event. 
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Figure 9 1st Level State Machine (old version) 
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Figure 10 1st Level State Machine (final version) 

 

4.3.2.2 2nd Level – Drone State Machine 

This level of the drone state machine has been strongly modified. As can be observed in Figure 11, 3 Monitoring 

States have been added to the FSM: 

1. The first one is the Idle Monitoring state. While the drone is in Idle phase, the new state will wait for 

the mission start event coming from the Monitoring Tool. 

2. The others 2 addition were used to extend the previous version of the mission: a drone tracking a 

target needs to come back home because of battery low issues. In order not to lose the target, another 

drone, doing coverage, has to substitute for it. The new drone will be selected autonomously by the 

swarm. Indeed, when a tracking drone received a battery low event through the new Tracking 

Monitoring state, a new drone has to be selected (“assignTask()” function). In the meanwhile, a drone 

performing coverage will be now able to react to the substitution request coming from another drone 

thanks to the Coverage Monitoring State. 

 

4.3.2.3 2nd Level – Rover State Machine 

The rover state machine (see Figure 12) has just been updated with the correction related to the reception of 

the target found event coming from one of the drones involved in the mission. 
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Figure 11 Final drone state machine for SAR scenario 
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Figure 12 Final rover state machine for SAR scenario 
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5 Conclusions 

In this deliverable we provide the final swarm modeling library: we introduced the final library structure and all 

relate components. We use the concepts of state machines as introduced in the previous deliverables and 

updated them for all three use cases: logistics, automotive, and search & rescue. to describe the behavior of 

the use cases, with a focus on the search and rescue use case. Especially for the automotive use case, we 

provided a set of algorithms that can be used within the state machine.  
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Acronyms 

 

Acronym Explanation 

DoA Description of Action 

FSM Finite State Machine 

KPI Key Performance Indicators 

UML Unified Modeling Language 
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