

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D4.6 – FINAL SWARM MODELING LIBRARY

Deliverable ID D4.6

Deliverable Title Final swarm modeling library

Work Package WP4 – Models and algorithms for CPS Swarms

Dissemination Level PUBLIC

Version 1.0

Date 03-12-2019

Status Final

Lead Editor Melanie Schranz (LAKE)

Main Contributors Melanie Schranz, Micha Sende (LAKE), Gianluca Prato (LINKS),

Angel Soriano (ROBOTNIK), Arthur Pitman (UNI-KLU), Etienne

Brosse (SOFTEAM)

Published by the CSPwarm Consortium

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 2 of 30

Document History

Version Date Author(s) Description

0.1 2019-07-03 Melanie Schranz (LAKE) First Draft of TOC

0.2 2019-09-10
Micha Rappaport

(LAKE)
Add Concept of Behavior Library

0.3 2019-09-10 Melanie Schranz (LAKE) Add Automotive Use Case,

0.4 2019-11-11

Melanie Schranz (LAKE),

Arthur Pitman (UNI-

KLU), Angel Soriano

(ROBOTNIK), Gianluca

Prato (LINKS)

Update Section 4

1.0 2019-12-03 Melanie Schranz (LAKE) Integrate reviews and finalize document

Internal Review History

Review Date Reviewer Summary of Comments

2019-11-12 Ákos Milánkovich (SLAB) Minor corrections and improvements

2019-12-02 Wilfried Elmenreich (UNI-KLU) Suggestions and minor corrections

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 3 of 30

1 Executive summary

This document, namely “D4.6 Final swarm modeling library”, is a deliverable of the CPSwarm project, funded

by the European Comission’s Directorate-General for Research and Innovation (DG RTD), under its Horizon

2020 Research and innovation program (H2020), reporting the final results of the activities carried out by WP4

– Models and algorithms for CPS Swarms, Task 4.3. The main objective of the CPSwarm project is to develop a

workbench that aims to fully design, develop, validate and deploy engineered swarm solutions. More

specifically, the project focuses on modeling of swarms of CPSs, implementing and optimizing the

corresponding swarm intelligence algorithms, driven by WP4.

Deliverable D4.6 is the final document in the WP4 deliverables and thus, builds on previous ones in this series

(D4.4 – Initial swarm modeling library and D4.5 – Updated swarm modeling library). In this version we describe

the final structure of the behavior library that consists of a hierarchical formalization including Swarm Functions,

Swarm Behaviors and Complex Behaviors. Furthermore, we describe updates for the use cases “Search and

Rescue” and “Logistics” in terms of state-machine design. The use case “Automotive” will be described in more

detail: the state-machine design for the use case and the algorithmic selection for individual states.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 4 of 30

Table of Contents

Document History .. 2

Internal Review History .. 2

1 Executive summary .. 3

Table of Contents ... 4

2 Introduction .. 5

2.1 Document organization ... 5

2.2 Related documents.. 5

3 Behavior Library .. 6

3.1 State Machines .. 6

3.1.1 State Types .. 6

3.1.2 Hierarchy .. 7

3.1.3 Events ... 8

3.2 Swarm Library .. 9

4 Use Cases ... 10

4.1 Logistics ... 10

4.1.1 Optimization of Scouting Behaviour ... 13

4.2 Automotive ... 14

4.2.1 Shortest Path Algorithm ... 15

4.2.2 Select Role ... 22

4.2.3 Follow Lead .. 22

4.3 Search & Rescue ... 22

4.3.1 Events management .. 23

4.3.2 Updated State Machines .. 23

5 Conclusions ... 28

References ... 29

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 5 of 30

2 Introduction

D4.6 – “Final swarm modeling library” is a public document defining the publicly available swarm models and

swarm algorithms found till CPSwarm M34.

LAKE, as deliverable leader, initially drafted the document, which has subsequently been extended by all

partners’ contributions. Deliverable D4.6 is the final document in the WP4 deliverables and thus, builds on

previous ones in this series (D4.4 – Initial swarm modeling library and D4.5 – Updated swarm modeling library).

In this version we describe the final structure of the behavior library and all updates for the individual use cases

in terms of state machine design and algorithms.

2.1 Document organization

The remainder of this deliverable is organized as follows:

Section 3 describes the final behavior library structure, state types and events. Section 4 describes the individual

use cases (logistics, automotive, search & rescue) with the final state machines. Section 5 draws the conclusion.

2.2 Related documents

ID Title Reference Version Date

[D4.4] Initial Swarm Modeling Library D4.4 1.0 M10

[D4.5] Updated Swarm Modeling Library D4.5 1.0 M22

[D2.2] Final Vision Scenarios and Use Case Definition D2.2 1.0 M16

[D7.1] Initial CPSwarm Abstraction Library D7.1 1.0 M18

[D7.2] Final CPSwarm Abstraction Library D7.2 1.0 M32

[D8.4] Final Swarm Logistics Demonstration D8.4 1.0 M36

[D8.6] Final Automotive Demonstration D8.6 1.0 M36

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 6 of 30

3 Behavior Library

The behavior library contains all software models of the CPSs that allows them to perform complex swarm

behaviors. It is a library of modular, reusable behaviors that are hierarchically structured and assembled in finite

state machines (FSMs). Layering the behaviors in a hierarchy with different degrees of abstraction allows a

separation of concerns. It has the benefit that often recurring behaviors and functionalities need to be defined

only once. This avoids redundancies in design and implementation. These behaviors are therefore defined and

implemented only once but can be used in different FSMs. They can be adapted to serve as starting point when

designing new behaviors. This significantly reduces the effort to develop new CPS applications by letting

developers reuse existing solutions and focus on application-specific problems. We propose the library

structure shown in Figure 1 where the colors represent the different behaviors types that will be explained in

more detail in the following.

These libraries are structured according to the level of hardware abstraction. The Swarm Library works

independent of the underlying hardware. It provides the complex behaviors modeled as FSMs together with

the swarm behaviors and swarm functions. It makes use of a communication library that provides an interface

for communication between CPSs. The Abstraction Library abstracts away the hardware specifics. It provides

functions that are related to the hardware based on hardware specific drivers and functionalities to access the

sensors and actuators. More details on the Abstraction Library can be found in Deliverable D7.1 and D7.2.

3.1 State Machines

A mission for a swarm of CPSs requires typically many different behaviors to be executed by the CPSs to

complete the different tasks of the mission. These individual behaviors can be simpler to describe and

implement, and are regarded to be atomic during modeling. Combining these simple behaviors into more

complex behaviors allows to achieve complex missions. A commonly used approach for this are FSMs where

the states correspond to simple behaviors and the FSM describes a complex behavior. FSMs are well suited for

behavior modeling because (i) they allow a visual representation that is easily understood by the human

modeler, (ii) they can be formally described to allow automatic code generation, and (iii) allow a modular

design which enables the reuse of behaviors. Each CPS can thus execute a FSM while always being in a defined

state which can vary between CPSs. Hence, even in a homogeneous swarm of CPSs, complex swarm

configurations can emerge where CPSs take on different roles based on the interactions between them.

3.1.1 State Types

The behavior state machine model is based on the UML behavior state machines. Specifically, the simple

behaviors are modeled by simple states and the complex behaviors are modeled using composite or

submachine states. Composite states allow a state to be modeled by another state machine whereas

submachine states allow to encapsulate generic state machines that can be reused within more than one state.

Figure 1: The behaviour library structure.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 7 of 30

In the context of CPS swarm behaviors, we propose four different behaviors types (the color codes refer to the

ones used in Figure 1):

 Complex behaviors (red): Behaviors that are defined by a state machine of simple behaviors, e.g., SAR.

 Swarm behaviors (green): Simple behaviors that execute a specific swarm algorithm exhibiting an

emergent swarm behavior, e.g., aggregation.

 Swarm functions (blue): Simple behaviors that execute a single function including the interaction

between CPSs, e.g., task allocation.

 Hardware functions (yellow): Simple behaviors that execute a single function including hardware

interaction, e.g., moving to a given location.

The behaviors are formalized by a unique name, a short description of the behavior, the behavior type, and the

inputs and outputs of the behavior.

3.1.2 Hierarchy

To allow a clean and structured design of the behavior state machines, we propose to use hierarchically nested

states defined in the UML standard. The organization as a hierarchy 𝐻 using a set of levels 𝐿𝑖 ∈ 𝐻allows to

consider different levels of detail at different hierarchy levels. An example with two levels 𝐻 = {𝐿1, 𝐿2}is shown

in Figure 2 where each color represents a different behavior type. In this example, level 𝐿1 represents the

highest level of the hierarchy, and considers parallel processing. Some behaviors need to be executed in parallel

such as navigating while performing collision avoidance. Each process performs a complex behavior in parallel

that is necessary for accomplishing the mission. Next, each complex behavior is assembled by using FSMs in

the second level 𝐿2 of the hierarchy. Therein, each state corresponds to a simple behavior such as swarm

behaviors, swarm functions, or hardware functions, where transitions are triggered by dedicated events. The

number of levels is dependent on the design strategy of the modeler and allows to model different levels of

abstraction.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 8 of 30

3.1.3 Events

The transitions between behavior states are triggered by events that can either originate locally, e.g., from

sensor readings or behavior rules or remotely, e.g., from communication between CPSs, or from a command

and control station. Exchanging events between CPSs enables the coordination of the swarm behaviors. Events

are processed locally and autonomously by each CPS as defined in the behavior FSMs. This allows

heterogeneous CPSs to influence each other's behavior changes by exchanging events. In complex behaviors,

events can either trigger a state change of the sub FSM or force the complex behavior itself to terminate and

thereby also terminate the currently running sub behavior. Events are formalized by a unique ID, a timestamp,

and a unique ID of the sender. Furthermore, events can have data associated with them in form of typed key-

value pairs. This data is passed to the behavior using special inputs that are bound to the data in the event in

order to supply constant input values to the behavior while the state is active. This binding is done on a per-

transition basis, where an association between the data of the incoming event and the special inputs of the

behavior can be made. Default values for the data can be defined in order to supply values for data missing in

the event. When an event is triggered, the data of the outgoing event is handled similarly to how incoming

 Figure 2: The behavior model hierarchy.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 9 of 30

events are treated. The outputs taken from the behavior are bound to the data of the outgoing event. This

binding is also done on a per-transition basis. Constant values can also be supplied for any of the data.

3.2 Swarm Library

The Swarm Library contains the swarm behaviors executed by the individual CPSs leading to the global swarm

behavior. They are platform independent and thus can be reused among different types of CPSs. The swarm

library is structured into three sub libraries in accordance with the previously introduced swarm behaviors. First,

the Complex Behaviors library contains the FSM that model the complex, high-level mission behaviors such as

SAR. They are defined as UML composite or submachine states. Second, the Swarm Behaviors library contains

individual swarm behaviors that exhibit an emergent behavior. Typically, such swarm behaviors are hand

crafted based on biological inspiration or generated automatically, e.g., using evolutionary optimization.

Examples are flocking, phototaxis, or collective transport. They are defined as UML simple states to be used in

the complex behavior FSMs. Third, the Swarm Functions library contain simple swarm related tasks. These are

tasks that do not lead to an emergent behavior but rather are used to enable the functioning of the swarm

behaviors. Examples are exchange of position information, task allocation, or computing the average velocity

of the swarm. They are defined as UML simple states to be used in the complex behavior FSMs.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 10 of 30

4 Use Cases

This section describes the updates on the related use cases of their state machines.

4.1 Logistics

The Logistics use case envisages a scenario where two classes of robots, scouts and workers, assist in moving

boxes in a warehouse. The scout robots, equipped with a QR-code reading camera, rove around the warehouse

space searching for boxes. Once a box is located, the scout notifies all workers robots of its location. Idle

workers robots bid for the job of transporting the box to a specified location based on their current location,

i.e. the distance to the box, and their remaining battery level. The selected workers moves to the box,

autonomously navigating around obstacles, lifts it using its elevator mechanism, moves to the destination, sets

the box down and returns to an idle state. The entire scenario in its final version is described in “D8.4 – Final

Swarm Logistics Demonstration” (M36).

Figure 3 1st Level State Machine

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 11 of 30

Figure 5 Scouts

Figure 4 Workers

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 12 of 30

Related to this use case it is important to highlight the addition of the human in-the-loop feature by the

implementation of a human presence alarm that will be given through the image processing of an external

camera. The details of the hardware are also present in D8.4.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 13 of 30

4.1.1 Optimization of Scouting Behaviour

In Figure 4, several different behaviors may be used as implementations for scouting during the discovery of

boxes. To demonstrate the optimization components in the CPSwarm Workbench, a random walk algorithm is

provided. While following this behaviour, the Scout robot picks a random direction and “walks” until it

encounters a box, the edge of the operating space or a distance threshold has been exceeded. It then picks a

new random direction and continues walking as before. As the distance parameter affects the effectiveness of

the Scout coverage of operating space, it may be optimized for the specifics of the scenario. Essentially the

optimization tool varies the parameter and assesses its performance by applying an objective function to a

large number of simulation runs thus estimating the parameter’s fitness. Within the CPSwarm Workbench this

is implemented by a series of interactions between the Simulation and Optimisation Orchestrator (SOO), the

Optimisation Tool (OT) and several Simulation Managers (SMs). As illustrated in Figure 6, Following an initial

setup phase where the components are configured correctly, the SOO instructs the OT to start an optimisation.

Using simulations run by individual SMs, the OT tests different parameter values and attempts to pick an

optimum value, which it then returns to the SOO and in turn, to the user. This optimised behaviour may then

be deployed to real hardware. The individual components are loosely coupled using a central XMPP server.

Figure 6 – An Overview of the CPSwarm Optimisation Process

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 14 of 30

4.2 Automotive

In summary, the automotive use case can be described as follows (find all details in D8.6 - Final Automotive

Demonstration): The aim is to form platoons of connected freight vehicles. The leading vehicle prescribes the

actions and decisions (e.g., navigation, decision on take-over maneuvers, sequencing maneuvers, lane change)

for the follow-up vehicle(s) that will make use of the leading vehicle's actions. The follow-up vehicle will need

full autonomous driving capability and environmental awareness. However, they will follow the leading vehicle

in a preset distance even when they have to make decisions, e.g., lane change maneuver on their own due to

an emergency situation, or leaving the platoon if the route to the destination deviates). The follow-up vehicles

will also take over full control in case the lane change needs to be interrupted for the complete swarm due to

other traffic prohibiting to change lanes.

For the platooning algorithms in the automotive use case, we defined following state machine (Figure 7).

Figure 7 Automotive Use Case Swarm Mission Level 1

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 15 of 30

The second level of the state machine can be seen in Figure 8.

For the algorithmic part we consider directed graphs only and denote them with

 set of edges 𝐸

 set of vertices 𝑉

 For each 𝑒 ∈ 𝐸: corresponding edge weight is 𝑐𝑒

4.2.1 Shortest Path Algorithm

The shortest path algorithm is an algorithm to find a path between two vertices to minimize the sum of the

weights of the edges. This algorithm is a crucial and time-relevant part of the behavior implementation.

Therefore different candidate algorithms are to be investigated, together with their advandages, disadvantages

and computational complexity O.

4.2.1.1 Breadth-First Search

Breadth first1 traversal visits all shallower nodes before visiting deeper nodes.

1 Skiena, S. S. (1998). The algorithm design manual: Text (Vol. 1). Springer Science & Business Media.

Figure 8 Automotive Use Cases Complex Behavior 1

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 16 of 30

Example - Consider the following tree

Apply breadth-first traversal to it would visit nodes in the order: 1, 2, 3, 4, 5, 6 using following pseudo code

function BreadthFirstTree(headNode) { 1
 Q := empty queue of nodes 2
 add headNode onto Q 3
 while Q is not empty: 4
 n := node on front of queue 5
 remove node on front of queue 6
 visit n 7
 for each child c of n: 8
 add c to Q 9
 end for 10
 end while 11
}12

In terms of unweighted graphs, the algorithm may be applied to graphs by maintaining a table of nodes that

have already been visited.

function BreadthFirstGraph(headNode) { 1
 Q := empty queue of nodes 2
 V := empty set of nodes 3
 add headNode onto Q 4
 while Q is not empty: 5
 n := node on front of queue 6
 remove node on front of queue 7
 visit n 8
 for each linked node l of n: 9
 if l in not in V: 10
 add l to Q 11
 add l to V 12
 end if 13
 end for 14
 end while 15
}16

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 17 of 30

Weighted graphs may be supported by adding dummy nodes as demonstrated in the following example:

Complexity

 Time complexity

O(|V|+|E|), where V is the number of vertices, E the number of edges.

Note: each vertex is enqueued and dequeued once, each edge is scanned once.

 Space complexity

O(|V|)

Up to |V| vertices may have to be enqueued

4.2.1.2 Dijkstra

The Dijkstra's Algorithm (also called Uniform Cost Search algorithm) has the goal to find the least cost path

from the initial node to a target node. Instead of exploring all possible paths equally, it favors lower cost

paths. It runs on a weighted graphs, but can be used either for directed or undirected ones. At the beginning,

it starts with the initial node and the target node [1, 2, 3, 4].

Example (extracted from [5]):

Converted into

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 18 of 30

At the very beginning we initialize the initial node V with zero, all others with infinity. We have a list to track

all the nodes we visited.

As we have only visited A, we check the neighboring nodes B, C and E. For each vertex we calculate: distance

to the current node + distance from current node to neighbor. In this example for the nodes

B: 0+4=4

C: 0+3=3

E: 0+7=7

If this value is less than the current tentative distance, then we replace it with this newly calculated value.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 19 of 30

In a next step we visit the vertex having the lowest cost value, in our example this is C (it gets part of the list

of the visited vertices). Again, we update the values for the neigboring vertices:

B: 3+6=9

D: 3+11=14

E: 3+8=11

As only vertex D shows a lower distance value (14<infinity) we update only this vertex.

The same procedure is repeated with all the vertexes that have a low weight cost. After C we visit B, from B

we go to D and from D to the target node F.

The Dijkstra algorithm’s pseudo code is the following:

function Dijkstra(Graph, source): 1
 for each vertex v in Graph: //initialization 2
 dist[v] := infinity //initial distance from source to vertex v is set to infinite 3
 previous[v] := undefined //previous node in optimal path from source 4
 end for 5
 dist[source] := 0 //distance from source to source 6
 Q := the set of all nodes in Graph //all nodes in the graph are unoptimized are in Q 7
 while Q is not empty: //main loop 8
 u := node in Q with smallest dist[] 9
 remove u from Q 10
 for each neighbor v of u: //where v has not yet been removed from Q 11
 alt := dist[u] + dist_between(u, v) 12
 if alt < dist[v] //relax (u,v) 13
 dist[v] := alt 14
 previous[v] := u 15
 end if 16
 end for 17

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 20 of 30

 end while 18
 return previous[]19

Complexity

 Time complexity

o Using a binary heap: O((|E|+|V|)log(|V|))

 Space complexity

o Using a binary heap: O(|V|)

o Up to |V| vertices may have to be stored

Advantages

1. Uniformed Algorithm: Dijkstra is an uninformed algorithm. This means that it does not need to know the

target node beforehand. For this reason it's optimal in cases where you don't have any prior knowledge of

the graph when you cannot estimate the distance between each node and the target.

2. For multiple target nodes: Since Dijkstra picks edges with the smallest cost at each step it usually covers a

large area of the graph. This is especially useful when you have multiple target nodes but you don't know

which one is the closest.

Disadvantages

1. Fails if weights are negative: If we take for example 3 nodes (A, B and C) where they form an undirected

graph with edges: AB = 3, AC = 4, BC=-2, the optimal path from A to C costs 1 and the optimal path from A

to B costs 2. If we apply Dijkstra's algorithm: starting from A it will first examine B because it is the closest

node. and will assign a cost of 3 to it and therefore mark it closed which means that its cost will never be

reevaluated. This means that Dijkstra's cannot evaluate negative edge weights.

4.2.1.3 A*

A* is a modification of Dijkstra’s Algorithm that is optimized for a single destination. Dijkstra’s Algorithm can

find paths to all locations; A* finds paths to one location, or the closest of several locations (in contrast to

Dijkstra, A* uses an additional heuristic that tells how far we have to go, e.g., Euclidean distance + the way

from the initial node (as in Dijkstra)). It prioritizes paths that seem to be leading closer to a goal. This useful

especially in environments with obstacles [6, 7, 8].

g(n)…exact cost of the path from the starting point to any vertex n

h(n)…heuristic estimated cost from vertex n to the target

In every step it examines the vertex n that has the lowest f(n)=g(n)+h(n)

Initialize the open list 1
Initialize the closed list 2
put the starting node on the open 3
list (you can leave its f at zero) 4
while the open list is not empty 5
 a) find the node with the least f on 6
 the open list, call it "q" 7
 b) pop q off the open list 8
 c) generate q's 8 successors and set their 9
 parents to q 10
 d) for each successor 11
 i) if successor is the goal, stop search 12
 successor.g = q.g + distance between successor and q 13
 successor.h = distance from goal to successor (This can be done using many way 14
 we will discuss three heuristics- Manhattan, Diagonal and Euclidean Heuristics) 15
 successor.f = successor.g + successor.h 16

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 21 of 30

 ii) if a node with the same position as 17
 successor is in the OPEN list which has a lower f than successor, skip this 18
 successor 19
 iii) if a node with the same position as successor is in the CLOSED list which has 20
 a lower f than successor, skip this successorotherwise, add the node to the 21
 open list 22
 end for 23
 e) push q on the closed list 24
end while25

Advantages

1. Heuristic: A* expands on a node only if it seems promising. It's only focus is to reach the goal node as

quickly as possible from the current node, not to try and reach every other node

2. Complete: A* is complete, which means that it will always find a solution if it exists.

3. Can be morphed into other algorithms: A* can be morphed into another path-finding algorithm by simply

playing with the heuristics it uses and how it evaluates each node. This can be done to simulate Dijkstra, Best

First Search, Breadth First Search and Depth First Search.

Disadvantages

1. Not useful if you have many target nodes: If you have many target nodes and you don't know which one is

closest to the main one, A* is not very optimal. This is because it needs to be run several times (once per

target node) in order to get to all of them.

Complexity

 Time complexity

o Depends on the heuristic, e.g., if the search space is a tree O(log h*(x))

 Space complexity

o Roughly the same as all other graph search algorithms

4.2.1.4 Bellman-Ford

Starting at a particular node in a directed graph, the Bellman-Ford algorithm computes the shortest paths to

all other nodes by progressively improving approximations [9, 10, 11].

function BellmanFord(vertices, edges, source) 1
 // set up distance table 2
 distance := array 3
 for each vertex v in vertices: 4
 distance[v] := inf 5
 end for 6
 distance[source] := 0 7
 // iteratively improve results 8
 for i from 1 to size(vertices)-1: 9
 for each edge (u, v) with weight w in edges: 10
 if distance[u] + w < distance[v]: 11
 distance[v] := distance[u] + w 12
 end if 13
 end for 14
 end for 15
 return distance16

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 22 of 30

Complexity

 Time Complexity

O(|V| * |E|) where |V| is the number of vertices and |E| the number of edges in the graph

 Space Complexity

O(|V|) where |V| is the number of vertices in the graph

4.2.2 Select Role

1. Decide on the role (leading or following vehicle)

 "Physical" first

o Auctioning

o Priorities

o Platoon size

 Consensus:

For applying such an algorithm, the main goal of platooning should be clear.

For example: in [1], Leader-Following consensus algorithm has been used in Vehicle platoons:

The goal is to maintain a fixed distance of the so-called ''String Stability''

Each vehicle can share information with the neighbours, and with the Leader as well if it is a

neighbour of the leader (in case of having a direct path, the leader information could be passed

onto followers then a cost function is applied to maintain a fixed distance

Generally, to decide if a vehicle should act a new leader, or just to follow the other one, or to do

nothing (keep leading on its own) is highly related to the exchanged information in the model and

the corresponding cost function as well. another example of using a consensus algorithm can be

found in [2] ' consensus-based approach for platooning with inter-vehicular communications'. Also,

the main goal was to regulate speed and relative distance of each vehicle with respect to its

predecessor and the leading vehicle.

References

- [1] Ruan, Y. and Jayaweera, S.K., 2014, October. Leader-following consensus in vehicle

platoons with an inter-vehicle communication network. In 2014 8th International Conference

on Telecommunication Systems Services and Applications (TSSA) (pp. 1-6). IEEE.

- [2] Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M. and Cigno, R.L., 2015, April. A

consensus-based approach for platooning with inter-vehicular communications. In 2015 IEEE

Conference on Computer Communications (INFOCOM) (pp. 1158-1166). IEEE.

2. Cooperative Path Finding

2a. Exchange costs (individual algorithms)

2b. Recalculate shortest path algorithm (individual algorithms)

4.2.3 Follow Lead

Follow the lead, until the recalculated shortest path defined to leave the platoon

4.3 Search & Rescue

The first design of the state machines for CPSs involved in the SAR scenario was described in D4.5. In the

following period the focus was directed towards the enrichment of the modeling facilities to realize more

complex state machines. In particular, the attention was focused in improving aspects related to the

management of events received by a specific CPS.

https://wiki.repository-pert.polito.it/xwiki-enterprise-web-7.4.5/wiki/cpswarm/view/Main/WP8+Use+Cases+Implementation/Car+Convoy%3A+State+Machine/Consensus+in+Vehicle+Platoons+/

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 23 of 30

Before explaining the result of this activity, taking a step back to review some concepts related to the event

management in the CPSwarm context is useful.

4.3.1 Events management

An event is anything that happens or take place during the execution of a mission. The main purpose of an

event is to trigger a reaction from one or more members of the swarm. Generally, this reaction consists in a

change of the current behavior of the CPS.

During the first period of the project threee different source of events have been identified:

 Swarm member: an event can be received from other swarm members.

 Monitoring & Command Tool: this case can be considered an extension of the previous one as, in the

current implementation, the tool works as one of the members of the swarm.

 The CPS itself: event can be arisen internally to the single swarm member. In this case, the source can

be identified among one of the sensors and actuators (through the Abstraction Library) or one of the

high-level functionalities and behaviors that are simultaneously running on board of the CPS.

Independently from the source, the reaction to a specific event inside the CPS can be managed at different

level of our software architecture:

 Abstraction Library level: the event can be processed by one of the components that are part of the

Abstraction Library. For instance, if the event corresponds to a specific request to one of the actuators

on board of the CPS, the related ROS component interfacing with the hardware will manage that

request.

 Swarm Library level: in this case, the event is managed by one of the functionalities provided by the

Swarm Library. The specific function will be able to read the data that are part of the event and execute

any computations based on those data. Furthermore, this event can cause the drop-down generation

of other events inside the CPS.

In both cases, the reaction to a specific event was expected by the developer that was implementing that

particular hardware driver or swarm functionality. To overcome the limitations of such approach, the Finite

State Machine Modeling was extended with the event monitoring at the state machine level. In fact, each state

machine corresponds to a single process running such as any other ROS component executing on the CPS.

In the previous version of this deliverable, this capability was modeled using a dedicated Event Monitoring

state that was responsible to process all kind of events (as can be seen in Fig.). Subsequently, this concept has

been better detailed to satisfy the requirement needed to allow the automatic generation of the state machine

through the CPSwarm Code Generator.

This improved technique consists in having a new dedicated Monitoring State running in parallel with a

specified executing state. This new state will be in charge of listening to a single specific event and after the

reception, will stop the executing task allowing the transition to another state. Associated to each specific state

there may be one or many Monitoring States. One for each event of interest.

The Monitoring State has been used into the updated version of the state machines for both drones and rovers.

More details on the new FSM will be presented in the following section.

4.3.2 Updated State Machines

In this section the main updates applied to the FSM for SAR scenario will be detailed. The mission that is

actually considered is just an extension of the previous one. Many parts of these improvements were possible

using the previously described Monitoring State.

4.3.2.1 1st Level – General State Machine

The main change from the last version (D4.5 – Updated Swarm Modeling Library) of this FSM is the deletion of

the Event Monitoring event.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 24 of 30

Figure 9 1st Level State Machine (old version)

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 25 of 30

Figure 10 1st Level State Machine (final version)

4.3.2.2 2nd Level – Drone State Machine

This level of the drone state machine has been strongly modified. As can be observed in Figure 11, 3 Monitoring

States have been added to the FSM:

1. The first one is the Idle Monitoring state. While the drone is in Idle phase, the new state will wait for

the mission start event coming from the Monitoring Tool.

2. The others 2 addition were used to extend the previous version of the mission: a drone tracking a

target needs to come back home because of battery low issues. In order not to lose the target, another

drone, doing coverage, has to substitute for it. The new drone will be selected autonomously by the

swarm. Indeed, when a tracking drone received a battery low event through the new Tracking

Monitoring state, a new drone has to be selected (“assignTask()” function). In the meanwhile, a drone

performing coverage will be now able to react to the substitution request coming from another drone

thanks to the Coverage Monitoring State.

4.3.2.3 2nd Level – Rover State Machine

The rover state machine (see Figure 12) has just been updated with the correction related to the reception of

the target found event coming from one of the drones involved in the mission.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 26 of 30

Figure 11 Final drone state machine for SAR scenario

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 27 of 30

Figure 12 Final rover state machine for SAR scenario

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 28 of 30

5 Conclusions

In this deliverable we provide the final swarm modeling library: we introduced the final library structure and all

relate components. We use the concepts of state machines as introduced in the previous deliverables and

updated them for all three use cases: logistics, automotive, and search & rescue. to describe the behavior of

the use cases, with a focus on the search and rescue use case. Especially for the automotive use case, we

provided a set of algorithms that can be used within the state machine.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 29 of 30

Acronyms

Acronym Explanation

DoA Description of Action

FSM Finite State Machine

KPI Key Performance Indicators

UML Unified Modeling Language

References

[1] „Dijkstra’s shortest path algorithm,“ GeeksforGeeks, [Online]. Available:

https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/. [Zugriff am

12 06 2019].

[2] „Dijkstra Algorithm: Short terms and Pseudocode,“ Geographic Information Technology

Training Alliance, 13 05 2014. [Online]. Available:

http://www.gitta.info/Accessibiliti/de/html/Dijkstra_learningObject1.html. [Zugriff am 12 06

2019].

[3] R. B. Games, „Introduction to the A* Algorithm,“ Red Blob Games, 26 05 2014. [Online].

Available: https://www.redblobgames.com/pathfinding/a-star/introduction.html. [Zugriff am 12

06 2019].

[4] I. Tinca, „From Dijkstra to A Star (A*), Part 1: The Dijkstra Algorithm,“ Big Data Zone, 08 02

2019. [Online]. Available: https://dzone.com/articles/from-dijkstra-to-a-star-a. [Zugriff am 13

06 2019].

[5] N. Fan, „Dijkstra's Algorithm,“ Youtube, 24 11 2012. [Online]. Available:

https://www.youtube.com/watch?v=gdmfOwyQlcI. [Zugriff am 12 06 2019].

[6] E. Sukaj, „What is the best alternative to Dijkstra's Algorithm?,“ Slant, 2015. [Online].

Available: https://www.slant.co/options/11584/alternatives/~dijkstra-s-algorithm-alternatives.

[Zugriff am 12 06 2019].

[7] A. Patel, „Introduction to A*,“ Red Blob Games, 2019. [Online]. Available:

http://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html. [Zugriff am 12

06 2019].

[8] „A* Search Algorithm,“ GeeksforGeeks, [Online]. Available: https://www.geeksforgeeks.org/a-

search-algorithm/. [Zugriff am 13 06 2019].

[9] A. Shimbel, „Structure in communication nets,“ Proceedings of the Symposiuum on

Information Networks, Bd. Polytechnic Press of the Polytechnic Institute of Brooklyn, pp. 199-

203, 1955.

Deliverable nr.

Deliverable Title

Version

D4.6

Final swarm modeling library

1.0- 03/12/2019
Page 30 of 30

[10] R. Bellman, „On a routing problem,“ Quarterly of Applied Mathematics, Bd. MR 0102435, Nr.

16, pp. 87-90, 1958.

[11] L. Ford, „Network Flow Theory,“ RAND Cooperation, 1956.

List of figures

Figure 1: The behaviour library structure. .. 6

Figure 2: The behavior model hierarchy. ... 8

Figure 3 1st Level State Machine .. 10

Figure 4 Workers .. 11

Figure 5 Scouts ... 11

Figure 6 – An Overview of the CPSwarm Optimisation Process .. 13

Figure 7 Automotive Use Case Swarm Mission Level 1 ... 14

Figure 8 Automotive Use Cases Complex Behavior 1 .. 15

Figure 9 1st Level State Machine (old version).. 24

Figure 10 1st Level State Machine (final version) ... 25

Figure 11 Final drone state machine for SAR scenario .. 26

Figure 12 Final rover state machine for SAR scenario .. 27

