
    
 

 

 

 
This project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 731946. 

 

 
 

 

 

 

 

 

D2.7 – FINAL LESSONS LEARNED AND REQUIREMENTS REPORT 

 

Deliverable ID  D2.7 

Deliverable Title  Final Lessons Learned and Requirements Report 

Work Package  WP2 

   

Dissemination Level  PUBLIC 

   

Version  1.1 

Date  2019-08-02 

Status  Final 

   

Lead Editor  FRAUNHOFER 

Main Contributors  Sarah Suleri, René Reiners, Farshid Tavakolizadeh (FRAUNHOFER), 

Etienne Brosse (SOFTEAM), Melanie Schranz (LAKE), Arthur Pitman 

(UniKLU), Judit Torma (SLAB), Davide Conzon (LINKS), Andreas 

Eckel (TTTECH, TTA) 

 

Published by the CPSwarm Consortium 

javascript:void(0)


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 2 of 59 

 

Document History 

 

Version Date Author(s) Description 

0.1 2018-08-31 
Sarah Suleri 

(FRAUNHOFER) 
First Draft with TOC 

0.2 2019-01-16 
Sarah Suleri 

(FRAUNHOFER) 
Section 4.1 (Non-functional Requirements) 

0.3 2019-01-28 

Etienne Brosse 

(Softeam) 
Section 5.1, 5.2 

Davide Conzon 

(LINKS) 
Section 5.4, 5.5, 5.6 

Arthur Pitman 

(UniKLU) 
Section 5.3 

Farshid 

Tavakolizadeh 

(FRAUNHOFER) 

Section 5.7, 5.9 

0.4 2019-02-04 

Andreas Eckel  

(TTTech) 
Section 5.8 

Judith Torma 

(Slab) 
Section 4.2 

Rene Reiners 

(FRAUNHOFER) 
Section 6 

0.5 2019-02-05 
Sarah Suleri 

(FRAUNHOFER) 
Accommodating changes suggested by internal review 1. 

1.0 2019-02-14 
Sarah Suleri 

(FRAUNHOFER) 
Accommodating changes suggested by internal review 2. 

1.1 2019-08-02 
René Reiners 

(FRAUNHOFER) 
Integrated Appendix A 

 

 

Internal Review History 

 

Review Date Reviewer Summary of Comments 

2019-02-12 
Angel Soriano 

(ROBOTNIK) 
Minor changes 

2019-02-05 Melanie Schranz (LAKE) Minor changes 

 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 3 of 59 

 

Executive Summary  

 

The present document is a deliverable of the CPSwarm project, funded by the European Commission’s 

Directorate-General for Research and Innovation (DG RTD), under its Horizon 2020 Research and innovation 

program (H2020), reporting the results of the activities carried out by WP2 – Use cases, requirements 

engineering and business models. The main objective of the CPSwarm project is to develop a workbench that 

aims to fully design, develop, validate and deploy engineered swarm solutions. More specifically, the project 

revolves around three vision scenarios; Swarm Drones, Swarm Logistics Assistant and Automotive CPS. The 

scenarios were outlined in the proposal and are refined within the engineering efforts alongside the project, 

driven by WP2. 

 

WP2 manages and undertakes the work of carrying out the iterative engineering of requirements, which 

focuses on the engineering process of initial requirements and reengineering after the end of each iteration 

cycle. The purpose of this work package is thus to maintain a continuous discovery and analysis of user centric 

requirements, needs and prospects, to be used in the design, development, implementation and validation of 

the CPSwarm workbench.  

 

The main objective of this deliverable is to describe the reiteration of the requirements elicited and 

documented in D2.3 and D2.6. The goal of this document is to define a list of CPSwarm requirements exploiting 

the “Volere” approach. These requirements have been continuously updated and refined through an iterative 

process that lead to the production of a total of three releases of this document, due respectively in Project 

Months M6, M14 and M26. Additionally, D2.7 also documents lessons learned during design and development 

of various components of the CPSwarm workbench. 

 

Furthermore, this deliverable formulates the foundation for the validation results to be specified in D8.8 and 

final system architecture analysis and design specifications to be documented in D3.3 in WP3, and later for 

the remaining technical WPs (WP3 up to WP7), towards the demonstration (WP8). 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 4 of 59 

 

 

Table of Contents 

1 Introduction ........................................................................................................................................................................................ 5 

1.1 Related documents................................................................................................................................................................ 5 

2 Approach and Methodology ....................................................................................................................................................... 7 

3 Requirements Engineering Approach ...................................................................................................................................... 8 

3.1 Volere Requirements Approach ....................................................................................................................................... 8 

3.2 Requirements Management .............................................................................................................................................. 8 

4 CPSwarm Requirement Specification ..................................................................................................................................... 12 

4.1 Non-functional Requirements ........................................................................................................................................ 12 

4.2 Requirements Validation ................................................................................................................................................... 40 

5 Lessons Learned .............................................................................................................................................................................. 41 

5.1 Modelling Library ................................................................................................................................................................. 41 

5.2 Modelling ................................................................................................................................................................................ 41 

5.3 Optimization .......................................................................................................................................................................... 42 

5.4 Simulation ............................................................................................................................................................................... 43 

5.5 Code Generation .................................................................................................................................................................. 45 

5.6 Abstraction Layer ................................................................................................................................................................. 45 

5.7 Deployment ............................................................................................................................................................................ 45 

5.8 Monitoring .............................................................................................................................................................................. 46 

5.9 Continuous Integration ...................................................................................................................................................... 47 

6 Design Pattern Library .............................................................................................................................................................. 47 

6.1 Design Pattern Structure ............................................................................................................................................... 48 

6.2 Design Pattern Library Structure ............................................................................................................................... 50 

6.3 Plans to proceed ................................................................................................................................................................. 51 

7 Conclusion ......................................................................................................................................................................................... 53 

Appendix A .................................................................................................................................................................................................. 55 

Aeronautics sector (predominantly DigiSky) ............................................................................................................................ 55 

Unmanned Vehicles ............................................................................................................................................................................ 56 

Other norms not directly related .................................................................................................................................................. 56 

Norms with regard to cyber-security .......................................................................................................................................... 56 

Automotive sector (predominantly TTTECH) ............................................................................................................................ 57 

Acronyms ..................................................................................................................................................................................................... 57 

List of figures .............................................................................................................................................................................................. 57 

List of tables ................................................................................................................................................................................................ 57 

References ................................................................................................................................................................................................... 58 

 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 5 of 59 

 

1 Introduction  

This deliverable documents the results of Task 2.1 Vision scenarios, use cases and initial requirements. The 

purpose of this deliverable is to refine user needs and technical requirements identified and described in 

D2.3 Initial requirements report and D2.6 Initial Lessons Learned and Requirements Report. 

 

This document describes the activities to support the identified workbench workflow, adapting it to the 

different environments involved in the CPSwarm project and provides a thorough analysis of the requirements. 

These high-level requirements will guide the development phases within the technical work packages, and 

therefore, this deliverable will be a common reference point for the CPSwarm consortium with relevance to 

architectural (WP3) questions and impacts on implementation (WP7 and WP8) as well as exploitation (WP9) 

efforts. 

 

The main objectives of the activities that were performed by Task T2.1 so far are listed in the following:  

 Requirements and user needs reiteration  

 Documentation of lessons learned 

 

Over time, while documenting and requirements formulated in this deliverable, demands for safety 

requirements arose from demos, during reviews and from general feedback. Especially for the implementation 

tasks in WP8, knowledge of norms, rules and regulations is necessary for designing a cyber-physical system 

within the actual domains. Since most work is put into role process and requirements definition for 

constructing and using the CPSwarm Workbench, we stick to this primary field.  

In addition, this document provides an overview of rules and norms that need to be taken care of when creating 

the concept of a CPS. These kinds of norms and rules must be provided by swarm and application designers 

and be available during design time. This kind of knowledge is not directly part of the requirements to be 

collected in this document. Still, the need for being aware of this knowledge is a requirement and thus, norms 

and rules are listed as one extensible library of the CPSwarm workbench.  

 

Appendix A summarizes the application experts’ knowledge as a table with references to adequate norms and 

rules. 

 

The development of this deliverable was coordinated by FRAUNHOFER with contribution of SOFTEAM, LAKE, 

SearchLab, LINKS, UniKLU and TTTech. The outcome of this deliverable will be used for deliverable D3.3: Final 

System Architecture Analysis & Design Specification and D8.8: Final Validation Results, due in M30 and M36 

respectively.  

 

1.1 Related documents 

 

ID Title Reference Version Date 

D2.1 Initial Vision Scenarios and Use Case Definition  2.0 M4 

D2.3 Initial Requirements Report  1.0 M6 

D3.1 
Initial System Architecture Analysis & Design 

Specification 
 1.0 M6 

D2.6 Initial Lessons Learned and Requirements Report  1.0 M14 

D2.2 Final Vision Scenarios and Use Case Definition  1.0 M16 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 6 of 59 

 

D3.2 
Updated System Architecture Analysis & Design 

Specification 
 1.0 M18 

D2.8 Validation Framework Specification  1.0 M18 

D3.3 
Final System Architecture Analysis & Design 

Specification 
 1.0 M30 

D8.8 Final Validation Results  1.0 M36 

 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 7 of 59 

 

2 Approach and Methodology  

As depicted in Figure 1, the development cycle for the CPSwarm Workbench starts from the top left with a 

scenario thinking methodology accompanied by collecting other kinds of input such as related work, 

documents, standards or available technologies. Once some understanding of the context has been reached, 

requirements are derived from it. These requirements, especially in the beginning, take the form of user 

requirements, i.e. what the user needs from the system. When the system starts to take a concrete shape, these 

user needs are transformed into technical requirements, i.e. what the system must offer or how the architecture 

should look like.  

 

In long-term iterations, system design, integration of technologies and knowledge as libraries take place that 

are then implemented in an incremental manner and validated later on. The results from the validation are 

then fed back into the scenarios and collection of available knowledge base. New findings, corrections and 

additions are then incorporated into the existing documents and requirements as well as ideas for innovations 

are updated. This way, the cycle starts again, affecting all technical developments, which, in the end, are 

validated again. This methodology allows for step-wise knowledge acquisition and development allowing for 

adjustments alongside conception and development. 

 

 

Figure 1: The CPSwarm Workbench development lifecycle 

 

The work reported in this deliverable is located in the top right corner and follows a user centred approach for 

requirements elicitation. This document also enlists the lessons learned during the system development cycle 

shown in the bottom right corner. The document’s structure is as follows: 

 

 Chapter 3 describes the Volere requirements approach followed throughout this deliverable for 

requirement reiteration. This section explains various attributes of the Volere Requirement Shell and 

additionally, explains the adaptation of this shell used for CPSwarm requirement specification. It also 

explains details of online support provided for requirement specification and management.  

 

 Chapter 4 enlists the updated requirements 

 

 Chapter 5 describes the lessons learned and recommendations related to each component of the 

CPSwarm workbench.  

 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 8 of 59 

 

 Chapter 6 explains the design pattern library, its current state and plans to proceed further.  

 

3 Requirements Engineering Approach 

CPSwarm is using the Volere Requirements approach described by Robertson and Robertson (cf. Ref. [9] [10] 

[11]). Volere is a proven and widely used general-purpose approach to requirements elicitation, including both 

the process of eliciting requirements as well as the format for representing them. Section 3.1 provides an 

overview of key elements of the Volere approach.  

 

3.1 Volere Requirements Approach 

The Volere requirements approach is described by Robertson and Robertson (cf. Ref [9] [10]). There is a web-

site dedicated to the Volere approach as well: http://www.volere.co.uk/. One of the various resources available 

on this site is the “Volere Requirements Specification Template” (cf. Ref [11]) known as the “Requirements 

Shell”. This format is further explained in subsection 3.1.1.  

 

3.1.1 Requirements Shell 

Figure 2 reproduces the Volere “Requirements Shell” by Robertson and Robertson (cf. Ref [11]). While the 

“Requirements Shell” mimics an index card, it is meant as the definition of a representational format that should 

be used with appropriate technical support for authoring requirements.  

 

Figure 2: The Volere “Requirements Shell” for representing atomic requirements [11] 

 

3.2 Requirements Management 

For the creation and management of information elements of a design process, a number of different 

approaches have been suggested by Stufflebeam et al. [12] and Penna et al. [7]. In the authors’ experience 

most tools that go beyond Microsoft (MS) Word and Excel have little prospect of being used on a broad basis 

among a heterogeneous group of partners in international R&D projects. While MS Word and Excel are 

http://www.volere.co.uk/


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 9 of 59 

 

certainly adequate for representing a set of user needs or requirements, they have not proven effective in 

sustainably supporting a continuous and iterative design process. 

 

As mentioned in D2.3, we used GitLab Issue Tracker for requirement specification and management. For the 

initial specification of user needs and requirements with limited attributes, the GitLab Issue tracker sufficed 

but for the reiteration of user needs and requirements, the GitLab could not support all the attributes of the 

Volere requirements shell. Therefore, we changed the platform to JIRA for requirement specification and 

management. The CPSwarm JIRA project space can be found at the following address and is hosted by 

Fraunhofer:  

https://jira.fit.fraunhofer.de/jira/projects/CRD/issues/ 

Two general issue types are currently available in the JIRA space of the CPSwarm Requirements and 

Development project. 

The first is a “User Need” that documents user stories based on the information acquired from the requirement 

engineering workshops conducted with our application partners. The creation dialog for user needs in JIRA is 

shown in Figure 3.  

 

 

Figure 3: Screenshot of the user need creation dialog in CPSwarm 

 

The second is a “Volere Requirement”, which is used to describe various capabilities of different identified 

components of the workbench. This type of requirements also defines the data flow between these 

components. Figure 4 shows a screenshot of the Volere Requirement creation dialog in JIRA. 

 

https://jira.fit.fraunhofer.de/jira/projects/CRD/issues/


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 10 of 59 

 

 

Figure 4: Screenshot of the Volere Requirement creation dialog in CPSwarm 

 

A state diagram defining possible states of an issue and appropriate transitions between states has been 

implemented for both types of issues, “User Need” and “Volere Requirement”, in the CPSwarm requirements 

engineering process. The state diagrams are shown in Figure 5 and Figure 6.  

In particular Figure 5 shows that as soon as a user need has been created it is in an “open” state. After an 

“open” user need has passed the quality check should be set to “quality check passed” state. The state 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 11 of 59 

 

“duplicate” can be assigned from all states (here the two mentioned above) and means that this user need 

actually is redundant to another user need, i.e. it duplicates another existing issue. 

 

 

Figure 5: State diagram of issue type “User Need” 

 

Logic depicted in Figure 6 is initially the same as for the previous description. Once the quality check is passed 

for a requirement, it can become a part of the specification. After the implementation is complete, it acquires 

the status of “implemented”. After that, it is validated. This three step process is iterative. The figure also shows 

that once a requirement is open, it can also be rejected based on a legitimate reason. 

 

 

Figure 6: State diagram of issue type “Volere Requirement” 

 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 12 of 59 

 

4 CPSwarm Requirement Specification  

As mentioned in the previous section, there are two types of requirements elicited for CPSwarm; User Needs 

and Volere Requirements. User needs are explained from the perspective of various user roles. Whereas, the 

Volere requirements are described from the perspective of various components of the workbench. In this last 

iteration of requirements, we have enhanced the requirements collection by adding non-functional 

requirements.  

 

4.1 Non-functional Requirements  

The initial set of technical requirements are documented in D2.3 and D2.6. Below are the details of reiterated 

Volere requirements. 

 

[CRD-115] The system shall be able to show/visualise relevant information in an understandable 

manner  

Description: The requirement is related to the need of the user to have a complete overview of 

the current situation. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity 

Rationale: This is essential for the usability of the system. 

Fit Criterion: The user can understand the relevant information shown by the system. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Very high 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 13 of 59 

 

 

[CRD-116] System should provide guides and other material for training of users 

Description: Guides and material should be directed at different users, e.g., detailed guides for 

professional users and simpler instructions for novices. This could be as Frequently 

Asked Questions. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity 

Rationale: It is important that the different types of users can learn to use the system easily and 

correctly. 

Fit Criterion: Guides, instructions and other material for training is provided. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 14 of 59 

 

[CRD-117] All the components of the system shall be well integrated 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major  

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional – Operational 

Rationale: It is important that the various components of the system are coherent and well 

integrated to ensure an uninterrupted flow of activities. 

Fit Criterion: All the components of the system are well integrated. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 15 of 59 

 

[CRD-118] The system should be able to interface and interoperate with existing systems 

Description: The system must be easy to install and integrate with other software, equipment and 

systems. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Minor 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Maintainability and Support 

Rationale: This is important to make the CPSwarm workbench easy to integrate with existing 

systems. 

Fit Criterion: The system interfaces and interoperations with existing systems 

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 16 of 59 

 

[CRD-119] Data processing and management must comply with relevant regulations 

Description: Data processing must comply with GDPR and national regulations. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Critical 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Legal   

Rationale: This is required to prevent misuse of data. 

Fit Criterion: Data processing and management complies with GDPR and national regulations. 

Customer 

Satisfaction: 

Very high  

Customer 

Dissatisfaction: 

Very high  

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 17 of 59 

 

[CRD-121] Any interface between the user and the platform must have a reasonable response time 

Description: More concrete value shall be defined by pilot partners. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Performance  

Rationale: Long response times can be very annoying for the users. 

Fit Criterion: All interfaces have reasonable response times. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 18 of 59 

 

[CRD-122] The system shall be scalable to support massive growth in the number of users/devices, 

etc. 

Description: The system should be easy to extend with additional (types of) devices, sensors, etc. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: This is inherent in a large-scale system. 

Fit Criterion: The system is scalable to support massive growth in the number of 

users/devices/etc.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 19 of 59 

 

[CRD-123] The solution should be in compliance with GDPR as well as national policies 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Critical 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: All solutions must comply with national and international rules and regulations. 

Fit Criterion: GDPR as well as national policies and regulations are considered. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 20 of 59 

 

[CRD-124] The system shall be evaluated by 85% of the professional users to be easy to use 

Description: This relates to the overall evaluation of the system. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity  

Rationale: It is important that the user interface is logical and intuitive. 

Fit Criterion: 85% of the professional users find the workbench easy to use. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 21 of 59 

 

[CRD-125] The system shall not generate additional workload for the professional users 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity  

Rationale: It is important that the system is perceived as a help not as a burden.  

Fit Criterion: The system does not generate additional workload for the professional users. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 22 of 59 

 

[CRD-126] Accessing sensitive data must be logged (User ID, Timestamp, etc.) 

Description: Sensitive data as defined in GDPR. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional – Legal 

Rationale: This is a legal requirement. 

Fit Criterion: Accessing sensitive data is logged (User ID, Timestamp, etc.). 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 23 of 59 

 

[CRD-127] Attempts at accessing sensitive data by unauthorised users must be logged  

Description: Surveillance of attempts at intrusion 

Should be achieved: 

 on the system level where sensitive data are stored (collection of system 

logs, evaluation and automatic prevention resp. alerting the owner of 

sensitive data repository) 

 on the network traffic level, it is possible to identify target of attempt by 

unauthorised user (Identity & Access Management, Intrusion Prevention 

resp. Anomaly Detection) 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Security  

Rationale: This is part of the built-in system security and privacy. 

Fit Criterion: Attempts at accessing sensitive data by unauthorised users are logged. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 24 of 59 

 

[CRD-128] The system shall be protected against cyber attacks 

Description: Protection against cyber-attack should be achieved: 

 on the system level (using anti-malware and system firewall) 

 within a network, on the traffic from/to the system (using firewalls and 

gateways, log collection and evaluation with automatic preventive measures 

[blocking] resp. at least alerting system owners about unusual behaviour) 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Critical 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Security  

Rationale: This is a must for online systems with sensitive data. 

Fit Criterion: The system is protected against cyber attacks. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 25 of 59 

 

[CRD-129] The system shall not use picture icons that could be considered offensive in any country 

where the system is used 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Look & Feel  

Rationale: This is a must for interoperability. 

Fit Criterion: The product does not use picture icons that could be considered offensive in any 

country where the system is used. 

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 26 of 59 

 

[CRD-130] Installing an upgrade shall not modify existing configuration values. 

Description: An exception is made for any values that the new version uses in different ways from 

the previous version. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Nice to have  

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Maintainability and Support  

Rationale: This refers to the installability of the system. The motivation for this requirement is 

to avoid wasting the time of users who have spent considerable time configuring the 

system to suit themselves.  

Fit Criterion: Installing an upgrade does not modify existing configuration values.  

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 27 of 59 

 

[CRD-131] When a new version of the main system is released, it shall be possible to upgrade to it 

from any previous version. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Nice to have 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Maintainability and Support  

Rationale: This refers to the installability of the system. The motivation for this requirement is 

to avoid wasting the time of users who have spent considerable time configuring the 

system to suit themselves.  

Fit Criterion: New version of the main system can be upgraded from any previous version.  

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 28 of 59 

 

[CRD-132] No piece of text that might be displayed to a user shall reside in source code. 

Description: That is, every piece of text that a user might see must be modifiable without 

changing source code. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Nice to have  

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Maintainability and Support  

Rationale: This refers to the modifiability of the system.  

Fit Criterion: No piece of text that might be displayed to a user resides in source code.  

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 29 of 59 

 

[CRD-133] The system shall not be shut down for maintenance more than once in a 24‐hour period. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Maintainability and Support  

Rationale: This refers to the maintainability of the system.  

Fit Criterion: The system does not shut down for maintenance more than once in a 24‐hour 

period.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 30 of 59 

 

[CRD-134] Provisions shall be made for the future usage of multiple languages. 

Description: Provision shall include at least the following: 

1)The structure of the data store shall be such that multi‐lingual support shall not 

necessitate additional components or the need to replace current components, and 

2) A user shall be able to nominate their preferred language when entering their 

personal information. 

 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Cultural and Political  

Rationale: This refers to the flexibility of the system.  

Fit Criterion: Provisions are made for the future usage of multiple languages.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 31 of 59 

 

[CRD-135] The system shall be useable by users after nominal training. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Minor 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity  

Rationale: This refers to the learnability of the system.  

Fit Criterion: The system is useable by users after nominal training.  

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 32 of 59 

 

[CRD-136] People with no training and no understanding of English shall be able to use the 

product. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Minor 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity  

Rationale: This refers to the learnability of the system.  

Fit Criterion: People with no training and no understanding of English are able to use the product.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 33 of 59 

 

[CRD-137] The product shall be self‐explanatory and intuitive 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Minor 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Usability and Humanity  

Rationale: This refers to the learnability of the system.  

Fit Criterion: The product is self‐explanatory and intuitive. 

Customer 

Satisfaction: 

Neutral 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 34 of 59 

 

[CRD-138] When an update failure is detected all updates performed during the failed session shall 

be rolled back to restore the data to pre‐session condition. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: This refers to the survivability of the system.  

Fit Criterion: When an update failure is detected all updates performed during the failed session  

rolled back to restore the data to pre‐session condition.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 35 of 59 

 

[CRD-139] All data recovered in a roll‐back condition shall be recorded for use in forward recovery 

under user control. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: This refers to the survivability of the system.  

Fit Criterion: All data recovered in a roll‐back condition is recorded for use in forward recovery 

under user control.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 36 of 59 

 

[CRD-140] When operating after a failure the user shall be informed the application is operating in 

a “safe mode” and all data is available for review without update 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Miguel Cantero  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: This refers to the survivability of the system.  

Fit Criterion: When operating after a failure the user is informed, the application is operating in a 

“safe mode” and all data is available for review without update  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=miguel.cantero


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 37 of 59 

 

[CRD-141] The system shall prevent access to failed functions while providing access to all currently 

operational functions 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Operational  

Rationale: This refers to the survivability of the system.  

Fit Criterion: The system prevents access to failed functions while providing access to all currently 

operational functions. 

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 38 of 59 

 

[CRD-142] Unless the system is non‐operational, the system shall present a user with notification 

informing them that the system is unavailable. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Major 

Reporter:  Sarah Suleri  Assignee:  Angel Soriano 

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Performance  

Rationale: This refers to the availability of the system.  

Fit Criterion: Unless the system is non‐operational, the system presents a user with notification 

informing them that the system is unavailable.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

High 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=angel.soriano


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 39 of 59 

 

[CRD-143] Passwords shall never be viewable at the point of entry or at any other time. 

Status: Quality Check passed 

Project: CPSwarm - Requirements and Development  

Type:  Volere Requirement Priority:  Medium 

Reporter:  Sarah Suleri  Assignee:  Omar Morando  

Labels:  NFR 

Requirement 

Type: 

Non-Functional - Security  

Rationale: This refers to the access security of the system.  

Fit Criterion: Passwords are never viewable at the point of entry or at any other time.  

Customer 

Satisfaction: 

High 

Customer 

Dissatisfaction: 

Neutral 

Source: User Needs Analysis 

 

  

https://jira.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=13106
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=sarah.suleri
https://jira.fit.fraunhofer.de/jira/secure/ViewProfile.jspa?name=omar.morando


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 40 of 59 

 

4.2 Requirements Validation  

Validation activities done by SLAB are divided throughout the project lifetime into two tasks: T2.4 

Validation Framework Specification and T8.4 Use Cases Validation.  

 

The deliverable D2.8 describing the Validation Framework (produced by T2.4) due M18 describes a 

methodology established by SLAB which was used to validate the requirements created for the CPSwarm 

Workbench. Section 4.3 of deliverable D2.6 specified the main characteristics and workflow of the Validation 

Framework designed for the CPSwarm project; we repeat the content in the paragraphs below for accessibility 

purposes. 

Validation and Verification are procedures in quality management checking whether a product, service 

or system meets its predefined requirements and whether it fulfils its intended purpose. Since these two terms 

are often used together, sometimes interchangeably, it is worth taking some words to clarify what we mean by 

validation and verification in the CPSwarm project. Validation aims to answer the question “Are we building the 

right system?” whereas Verification helps us to answer to “Are we building the system right?”. Validation is used 

to ensure that a product, service or system is designed to satisfy the needs of its customers, users and other 

stakeholders while verification ensures that the end product complies with its specification. 

Our methodology uses different kind of metrics to validate and verify requirements – namely Key 

Performance Indicators (KPIs), Test Cases and Maturity Levels. 

First, the requirements are translated into measurable metrics: either test cases which, when passed 

indicate that the requirement has been met, or into KPIs which set a target value in a way that supports the 

assumption that the requirement has been met. Templates for KPIs and formal/informal test cases are included 

in the deliverable. 

When a requirement meets the KPI assigned to it or passes its test case, it indicates that the project is 

making progress – but to measure how much, these events are linked to specific maturity levels. Thus, different 

KPIs are required for different maturity levels. We defined five maturity levels to be used in the Validation 

Framework: 

1. Proof of concept (demonstrates feasibility) 

2. Working (core features are present) 

3. Feature complete (all planned features are present) 

4. Optimized (performance is up to expectations, reasonably error free) 

5. Production ready (meets standards, has documentation, easy to use) 

Building on the roadmap described in the project proposal, we set a number of milestones based on the due 

dates of relevant deliverables with target maturity levels for each component and the workbench as a whole.  

The goal of our validation activities is to track and validate changes to the project requirements 

implementing an iterative approach. When requirements change and/or components mature, these changes 

are periodically registered and new metrics are tailored to validate them.  

At the time of writing, an initial evaluation of the CPSwarm components has been performed using the 

methodology described above (and specified in detail in D2.8). The results of this evaluation have been 

published in deliverable D8.7. 

The maturity levels of the CPSwarm components have been determined based on KPI values at the time 

of the evaluation. Overall, maturity levels for most components are ML1 or ML2, somewhat behind the expected 

overall ML2 maturity level. The evaluation has identified some clear areas of improvement for the less-mature 

components in the project moving forward.  

As more advanced functionality is implemented into the CPSwarm components, we will be updating the 

requirements in preparation for the second round of evaluations. This second round of requirements will be 

specified in Deliverable D8.8 – Final Validation results (M36). 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 41 of 59 

 

5 Lessons Learned  

The following sections discuss lessons learned for various components of the CPSwarm workbench. We have 

used a standard template [18] in order to document lessons learned.  

 

5.1 Modelling Library  

Table 1: Lessons learned for Modelling Library 

Category Issue Name Problem/Success Impact Recommendation 

Interface Model 

element 

differentiation 

The graphical 

differentiation 

between some 

UML or SysML 

elements is often 

not clear enough 

for new modeller. 

Users 

misunderstand 

examples and 

encounters 

difficulties 

during their 

learning 

phases. 

Graphical 

differentiation 

between UML and 

SysML elements 

must be increased 

by using, e.g., 

different colours. 

Wording 

Confusion 

between 

Modelling 

Catalogue and 

Modelling 

Wizard 

Both Modelling 

Catalogue and 

Modelling Wizard 

concepts have 

been introduced 

in CPSwarm. The 

Modelling 

Catalogue is 

composed of a 

set of model 

examples, the 

Modelling Wizard 

provides 

guidelines, based 

on the Model 

examples, to 

sketch CPS 

swarms. 

Users often 

learn by try 

and test 

different 

models but 

the confusion 

between the 

Modelling 

Catalogue and 

the Modelling 

Wizard lost 

them. 

Modelling 

Catalogue and 

Modelling Wizard 

must be more 

documented to 

clarify these 

concepts. 

 

5.2 Modelling  

Table 2: Lessons learned for Modelling 

Category Issue Name Problem/Success Impact Recommendation 

Modelling Environment 

modelling is 

not user 

friendly 

Modelling a 

complex 3D 

environment is 

not efficient using 

UML/SysML-like 

editors. 

Modelling a 

physical 

environment 

under an 

UML/SysML-

like editor is a 

waste of time 

and energy. 

The concept of 

environment must 

be still available 

under the 

Modelling Tool, 

but as reference to 

external artefacts 

managed by 

dedicated third-

party tools. 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 42 of 59 

 

Category Issue Name Problem/Success Impact Recommendation 

Modelling Security/Safety 

aspect 

management 

Several concepts 

of the models 

have impact on 

the security or 

safety aspects. 

Time is spent 

during safety 

and security 

management 

in specified 

aspect already 

known at the 

modelling 

level 

Identifying and 

exploiting the 

modelling impact 

on safety and 

security aspects 

would be a huge 

gain of time. 

Component 

Integration 

Integrating 

modelling 

simulation. 

Simulation was 

originally planned 

to be performed 

for Optimization 

only. 

Modeller 

cannot 

simulate their 

designs 

without 

optimizing 

them before. 

A connection 

between the 

Modelling and the 

Simulation Tools 

should be 

implemented. 

 

5.3 Optimization 

Table 3: Lessons learned for Optimization 

Category Issue Name Problem/Success Impact Recommendation 

Interface 

Optimization 

Tool 

Generality 

Optimization Tool 

API should support 

multiple 

optimization tools. 

XMPP interface 

must be useable 

by any 

optimization 

tool.  

Explore and test 

integration with 

other optimization 

tools. 

Interface 

Optimization 

Tool 

Robustness 

Optimization Tool 

API should be 

robust against 

failure. 

Failure requires 

restarting the 

optimization 

session. 

Extend API to 

support resuming 

optimization 

sessions. 

Functionality 
Problem 

Generality 

The Optimization 

Tool must support 

multiple problem 

definitions. 

The Optimization 

Tool supports 

extensive 

configuration 

options but 

remains agnostic 

to the specific of 

the actual 

problem 

definition. 

Test the applicability 

of different 

configurations in 

real-world 

scenarios. 

Functionality 

Swarm 

Algorithm 

Optimization 

The Optimization 

Tool must be able 

to optimize swarm 

algorithms. 

The Optimization 

Tool can 

optimize swarm 

algorithms in an 

identical fashion 

to other 

algorithms. 

Test optimization 

problems involving 

swarm algorithms. 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 43 of 59 

 

Functionality 

Human-in-

the-loop 

Optimization 

The Optimization 

Tool must be able 

to optimize 

human-in-the-loop 

parameters. 

Human-in-the-

loop parameters 

may be 

optimized by 

optimizing 

multiple related 

sub-problems. 

Implement specific 

support for human-

in-the-loop 

parameters. 

Test optimization 

problems involving 

human-in-the-loop 

parameters. 

Component 

Optimization 

Tool 

Scalability 

The Optimization 

Tool must be able 

to scale to large 

problems. 

As heavy 

computation is 

not conducted 

by the 

Optimization 

Tool itself, 

simulation nodes 

may be added to 

scale the 

system’s 

performance. 

Test scalability using 

complex problems. 

Component 

Optimization 

Tool 

Performance 

The Optimization 

Tool must be able 

to efficiently 

optimize problems. 

Better 

performance 

requires more 

sophisticated 

evolutionary 

algorithms. 

Implement and 

evaluate 

sophisticated 

evolutionary 

algorithms such as 

CEA2D. 

 

5.4 Simulation  

Table 4: Lessons learned for Simulation 

Category Issue Name Problem/Success Impact Recommendation 

Component 

Integration 

Integrating 

simulation 

environment 

Several physical-

close simulators 

(e.g. Gazebo and 

Stage) have been 

integrated to test 

the XMPP based 

distributed 

approach. 

The code has 

been 

refactored to 

support this 

type of 

simulators. 

Extend the 

simulation 

environment to 

other ROS based 

simulators, to 

make it as general 

purpose as 

possible. 

Interface Simulator API With the 

refactored 

simulation API, 

the controller is 

passed from the 

OT to the 

simulator. 

The number of 

messages 

exchanged is 

lower than 

before. 

Check if this is 

possible with all 

the candidate 

types, not only 

neural networks. 

Interface Simulator API With the 

refactored API, 

the discovery of 

the server is done 

The discovery 

process doesn’t 

affect the 

optimization 

time. 

Implement a 

solution based on 

XMPP presences 

to keep the list of 

available servers 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 44 of 59 

 

Category Issue Name Problem/Success Impact Recommendation 

only in a first 

phase. 

updated also 

during the 

optimization. 

Component  Compilation 

Time 

Recompile the 

candidate passed 

to the simulator 

requires the 

recompilation of 

the ROS project. 

The overall 

optimization 

time is very 

long (almost a 

week with one 

simulator). 

A way needs to be 

found 

(incremental 

compilation, use 

of text file) to 

reduce the 

compilation times. 

Component 

Integration 

External 

Simulator 

integration 

Integrating 

Gazebo and 

Stage as 

distributed 

simulation 

environment 

using ROS. 

Stage and 

Gazebo 

simulator 

started using 

XMPP 

messages. 

Implement 

standard 

interfaces to 

better control the 

simulation 

process. 

Component Simulation 

Environment 

Scalability 

Scaling the 

simulation 

environment 

requires to use a 

different (virtual) 

machine for each 

simulation server. 

Scaling the 

simulation 

environment 

requires the 

access of too 

many physical 

machines. 

Use technologies 

like Docker and 

Cloud Services to 

easily scale the 

Simulation 

Environment. 

Component Communication 

Protocol 

Implement the 

API using a 

communication 

protocol that 

supports all the 

communication 

patterns required. 

The 

implementation 

of the API in 

the different 

components 

require only to 

integrate the 

client for one 

protocol. 

Use protocols that 

support multiple 

communication 

paradigms 

(publish/subscribe, 

one-to-one, 

presences) like 

XMPP. 

 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 45 of 59 

 

5.5 Code Generation  

Table 5: Lessons learned for Code Generation 

Category Issue Name Problem/Success Impact Recommendation 

State Machine 

implementation 

library 

System 

Responsiveness 

Transition from a 

state to another 

triggered by 

external events has 

some latency. 

The SMACH 

state machine 

is not enough 

responsive to 

manage safety 

or emergency 

situations. 

Emergency or safety 

operations should 

not be managed at 

the State Machine 

level if there are 

strict time 

constraints. 

Code generator 

input 

SCXML standard 

extensibility  

The SCXML format 

in not easily 

extensible. 

Extend the 

SCXML format 

in order to fulfil 

some specific 

Code 

Generation 

requirement is 

not always 

straightforward. 

The possibility to 

extend the SCXML 

parser library or to 

implement an ad-

hoc one to parse 

CPSwarm’s SCXML 

extensions could be 

considered. 

 

5.6 Abstraction Layer  

Table 6: Lessons learned for Abstraction Layer 

Category Issue Name Problem/Success Impact Recommendation 

Component 

Design 

Abstraction 

Library API 

design 

Developing the 

Abstraction Library 

starting from ROS 

turned out to be a 

good decision. 

Levels of 

abstraction 

provided by 

ROS through 

message 

interfaces 

allowed a good 

software’s 

reusability and 

flexibility for 

future 

extensions. 

In order to support 

“not-compatible with 

ROS platforms” the 

possibility to 

guarantee the same 

features should be 

considered as a 

starting point. 

Component Abstraction 

Layer usability 

Definition of an 

Abstraction Layer is 

not sufficient to 

support the 

automatic 

generation of 

model-designed 

swarm behaviour. 

Functionalities 

provided by 

the Abstraction 

Layer cannot 

be used if not 

correctly 

modelled in 

the Modelling 

Tool. 

Provide accurate 

models for all high-

level functionalities in 

the Abstraction 

Library. 

 

5.7 Deployment  

Table 7: Lessons learned for Deployment 

Category Issue Name Problem/Success Impact Recommendation 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 46 of 59 

 

Code 

Compilation 

Long 

compilation 

time 

The compilation takes a 

very long time on CPS 

hardware. 

The long 

compilation 

time extends 

the duration of 

deployment 

process. 

Adopt cross-

compilation 

strategies using 

more powerful 

hardware. Perform 

incremental 

compilation. 

Code 

Compilation 

Cross 

compilation 

complexity 

The high complexity 

involved in cross 

compilation toolchain 

setup is costly for most 

developers. 

Most 

developers 

tend to 

perform native 

compilations. 

The Deployment 

Tool should provide 

a once-for-all 

native compilation 

utility. 

Deployment 

Monitoring 

Log 

management 

Collecting all application 

logs wastes networking 

and processing resources. 

Logs are 

essential 

information for 

debugging. 

Collecting all 

logs from 

remote devices 

has significant 

performance 

drawbacks. 

The Deployment 

Tool should 

prioritize logs and 

offer a way to 

collect more 

verbose 

information on 

demand. 

Deployment 
Target 

selection 

It is difficult to select 

CPSs among a large pool 

of heterogeneous 

devices. 

It becomes 

more difficult 

to select 

devices as their 

number 

increases, 

making it error-

prone, tedious, 

and often 

impossible. 

The Deployment 

Tool should provide 

a high level 

grouping system to 

target devices 

based on their 

meta information 

or location. 

Deployment 

Monitoring 

Status 

monitoring 

Monitoring the status of 

many devices is not 

feasible by looking at 

logs from individual 

devices. 

Erroneous 

application 

runtime 

behaviour is 

difficult to 

catch. 

The Deployment 

Tool shall provide a 

way of clustering 

important 

information 

depending on their 

similarity. 

 

5.8 Monitoring  

Table 8: Lessons learned for Monitoring Tool 

Category Issue Name Problem/Success Impact Recommendation 

Integrateability of 

process 

Adapt for 

industrial 

grade 

Requirement 

Management 

Tools 

We use Integrity and 

DOORS. It was 

complex to integrate 

the requirements into 

the system. 

This meant, 

that all 

requirements 

needed 

manual 

integration. 

We will not make 

use of this method 

after the project. It 

was interesting to 

explore such 

option, but we do 

not see a use in 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 47 of 59 

 

industrial 

development. 

Tracking 

requirements/Coverage 

Complexity 

in tracking 

When 

generating/developing 

the Monitoring Tool 

we found it difficult to 

track coverage of the 

requirements other 

than by manual 

access. In our tool 

approach 

this is 

covered with 

powerful 

Tool 

support. 

In our 

requirements 

process it is also 

questionable if it 

is feasible to take 

several rounds of 

requirements 

generation. In 

general, we need 

to make a 

“Change Request” 

to the customer in 

case of modifying 

agreed 

requirements. 

We find it difficult 

to apply this 

approach to our 

internal 

development 

process. 

 

5.9 Continuous Integration  

Table 9: Lessons learned for Continuous Integration 

Category Issue Name Problem/Success Impact Recommendation 

Build Artefacts 
Artefact 

delivery  

Most CPSwarm 

components are released 

after successful build and 

test as soon as the 

developer makes 

changes to the code. 

All interested 

stakeholders 

have access to 

the latest 

tested artefacts. 

All new 

components should 

follow the same CI 

flow to ensure up-

to-date and secure 

artefact delivery. 

Build Status 
Build and test 

results 

Developers receive e-mail 

notifications whenever 

their changes result in 

build errors and failed 

tests. 

Developers get 

information 

during every 

development 

iteration and 

can possible fix 

issues. 

Developers should 

subscribe to build 

and test results and 

promptly react to 

possible issues. 

 

6 Design Pattern Library  

Throughout the requirements elicitation process in the first 16 months of the projects, it turned out that there 

are more than “just” functional and non-functional requirements and “user needs” that need to be taken into 

account when designing a cyber-physical system in a specific domain. There is a need of a certain knowledge 

foundation on which the team can start designing applications. This knowledge foundation includes 

knowledge, e.g., on: 

 

- Rules and regulations 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 48 of 59 

 

- Safety rules and law 

- Proven design guidelines 

- Standards 

- De-facto standards 

- Commonly known agreements and workarounds 

- UI Design 

 

Knowledge from these areas is usually not directly formulated as a requirement but something that needs to 

be taken in to account when trying to fulfil other requirements. Thus, this knowledge is implicit and only 

accessible via domain experts. The approach of the CPSwarm project is to gather technologies and knowledge 

in libraries as described in the preceding sections. For the kind of knowledge described here, the common 

knowledge ground cannot be kept, explained and conveyed in a technical way. 

Therefore, the concept of Application Design Patterns is applied in this concept and interconnected pieces of 

knowledge will be formulated within an evolving design pattern library. The concept of the design pattern is 

established since long in architecture [19], software systems [20], organizational contexts [21] as well as user-

interface [22], website [23] or application design [24].  

 

A design pattern consists of specific parts describing the context, in which a certain problem occurs and how it 

can be solved, including the consequences of the solution. Patterns are usually organized in clusters of design 

pattern libraries that are presented by domain experts after a long time of engineering. CPSwarm follows the 

approach of described in [25] who formulates patterns during system engineering and design time. Pattern 

mature and reach a reliable state during the project work and are supported by the project community instead 

of one pattern expert. The whole approach is web-based such that the CPSwarm project can present and make 

accessible the patterns gathered over the project duration and beyond. This helps to present sustainable 

domain knowledge supporting future work. 

In upcoming deliverables from work packages 4 that handle the “Human-in-the-Loop” concept, the 

implemented approach will be described in more detail together with the online version of the CPSwarm 

Design Pattern Library. 

6.1 Design Pattern Structure 

The used pattern structure is inspired by the approaches described by Alexander and others [24, 25] and 

provides a flexible set of fields that are filled over time during the maturation process. The more mature a 

pattern becomes, the more fields need to be filled in order to improve its completeness. Based on the fields, 

i.e., the pattern’s formulation quality and validity are determined and influenced by updated formulations. Each 

pattern should take into account the following principles: 

 

• The patterns are formulated in natural language. 

• The patterns must be easily understandable by non-experts.  

• The patterns must be relevant for the project’s domain. 

 

The recommended reading path of the pattern starts with the name that should already give an idea about the 

pattern’s topic, followed by a problem summary and suggested solution. The contents should be easy and fast 

to read. Based on these fields, the reader is able to make a quick decision whether the pattern is suited to the 

current situation in the project work or information finding process. In this case the fields about the context, 

detailed problem description, solution summary and solution description are the next parts of interest. For the 

pattern as a whole, the fields are arranged in a different order as shown below since they are arranged in an 

argumentative way for reading the entire pattern.  

 

The derived pattern structure that is used within the evolving library approach is as follows: 

 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 49 of 59 

 

• The pattern’s Name should be short and instructive, reflecting the solution to the problem being 

addressed. As in the traditional approaches, the name should be easy to remember and encapsulate 

the pattern’s central statements such that it can serve the project’s vocabulary. 

 

• The Hierarchy Level is treated as a category. However, instead of simply clustering patterns, they shape 

the structure of the pattern library and therewith the relations between patterns, i.e. more abstract 

patterns are formulated in the upper hierarchies, more concrete patterns in the lower ones (cf. Section 

5.3). The hierarchy level can be suggested by the pattern author but altered by community suggestions 

during the process. This way, the pattern can be moved to another hierarchy level depending on its 

abstractness of formulation. 

 

• The Pattern Maturity State is determined by the rules of the pattern maturation process and depends 

on the pattern’s formulation quality, with regard to readability, understandability and appropriateness, 

as well as its validity as explained in [25]. 

 

• Authors can initially mark a contribution as anti-pattern via an Anti-Pattern Indicator. In the interest of 

the amount of project knowledge that needs to be managed, only non-trivial flaws should be 

documented. Still, the anti-pattern indicator is continuously adjusted during the process that allows 

the contrary development of a pattern based on supporting and refuting evidence. 

 

• The Context section relates patterns to each other. In the context section of a pattern, the patterns that 

point towards the current one can be described such that only a brief summary of the context needs 

to be given. Further information can be found in the preceding patterns the context refers to. Often, a 

preceding pattern is extended by the current one that now tackles more specific aspects of a more 

general solution. A problem is examined in more detail and more specific solutions are described. With 

the help of the context, the reader is able to decide whether he/she possesses enough knowledge to 

understand the current situation the pattern describes or if he/she needs to read more preceding 

patterns in order to fully understand the current pattern’s intention. 

 

• The Problem Summary field briefly outlines the central problem the pattern tackles in order to allow 

the reader to quickly decide whether the pattern matches to the problem situation he/she is currently 

dealing with. 

 

• The field on Problem Details and Forces further describes the problem context and discusses reasons 

that lead to the problem. Reasons can originate from external influences such as legal or technical 

restrictions that are further elaborated. These “forces” influence the proposed solution. When applying 

the pattern, the reasons for the forces as well as their impact on the solution need to be understood 

by the reader. Since the proposed solution may be well-suited for specific aspects but implies 

disadvantages on other aspects, different patterns on the same level may propose different alternative 

solutions. In the scope of exploring the project and development knowledge, the understanding of 

forces within the detailed problem discussion may lead to alternative solutions that have not yet been 

analysed. 

 

• The Solution Summary provides the central statement of how to solve the problem in the given context. 

The concise formulation of the solution serves the reader’s decision-making process whether the 

pattern is suited to his/her current situation but also helps to better remember the advice given by the 

pattern. 

 

• The section on Solution Details and Consequences elaborates on the factors and reasons that lead to 

the solution. Explanations and considerations on the pros and cons with regard to the forces are given. 

This part should point out benefits but also discuss disadvantages that occur when following the 

advice. Here, the consultative character of a pattern as solution approach but also as knowledge source 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 50 of 59 

 

is emphasized. The solution is not to be accepted as a statement out of question but as consideration 

and elaboration of known possibilities and consequences. 

 

• Illustrations enrich the explanation of the solution and further support the usage of the pattern as 

vocabulary. The pattern’s name and central solution statement can be connected to the illustration 

therefore making it easier to remember and recognize the pattern again during browsing the pattern 

language. In the presented approach, multiple illustrations may be submitted as drawings, diagrams, 

pictures or videos. The pattern author is encouraged to primarily provide a key illustration in an image-

based format to support the described mental connections. 

 

• The mentioning of a pattern’s Pattern Origin encourages the reuse of already existing and validated 

results from other projects or repositories that are relevant for the current project knowledge. The 

origin field differentiates between newly derived and introduced patterns. It may be necessary to adapt 

the latter kind of patterns since they may be formulated in a different, more specific or more abstract 

context but the essence of the pattern is relevant for the project and can be extracted. This 

circumstance has to be regarded when formulating the pattern. The insertion may need to adapt 

naming conventions and formulations and transform them into the pattern language’s terminology. 

The approach distinguishes between three different categories: 

 

– Derived from project: The pattern was derived directly from the work within the project. 

Continuous formulation and validation need to ensure the pattern’s validity. 

– Adapted to project: The pattern originates from external sources but has been adapted to the 

project’s context. Still, the need for validation is given. Preliminary project-external work was 

already put into the pattern’s formulation and is used as evidence supporting the pattern as 

described below. 

– Project-external: The pattern exists in other related pattern collections. The pattern can directly 

be used in the current project scope since the project domain and pattern origin are closely 

related. 

 

6.2 Design Pattern Library Structure 

As the current state of the library is still initial a first idea of hierarchy levels is introduced that needs to be 

further elaborated with pattern experts. Figure 7 shows a screenshot of the current pattern library structure. 

The web-based version of the pattern library is available online at https://patterns.fit.fraunhofer.de/cpswarm. 

The current state of the design pattern library foresees the following pattern categories that are put in the 

following, preliminary hierarchy: 

- Laws and Ethics 

- Safety 

- Technology and System Design 

- Human-Swarm Interaction Design 

- Data Management 

- Privacy and Security  

- Application Domain #1: Search and Rescue 

- Application Domain #2: Warehouse Logistics 

- Application Domain #3: Automotive 

 

As per process definition, the structure is not fixed yet and will be adapted over time according to the findings 

during the pattern formulation. The categories represent current findings where knowledge on application 

design was already formulated by application partners during requirements and demonstration planning 

sessions. The current discussion is about the reintegration of existing patterns from the existing project 

https://patterns.fit.fraunhofer.de/cpswarm


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 51 of 59 

 

BRIDGE1 from the emergency response domain and the formulation of current safety patterns that were 

partially revealed during the conception of the two review demos. About categories, the current discussion 

involves the splitting of laws and ethics since these are not necessarily always in line with each other. 

 

 

Figure 7: Screenshot of the current pattern library structure 

 

6.3 Plans to proceed 

From the necessity of modelling and documenting human-swarm interaction, the so-called “human-in-the-

loop” concept (cf. D4.2), the idea arouse to document “soft” findings and “things that need to be known” when 

designing a swarm application as design patterns. With the introduced pattern library structure, several aspects 

are covered and trigger the designer to consider them at design time. Since the concept and the gathering of 

                                                
1 http://www.bridgeproject.eu 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 52 of 59 

 

contents really started in the third project year, the need for a pattern library and the current structured can be 

expressed in this deliverable.  

First pattern candidates are already collected. However, the detailed formulation of patterns needs to follow in 

dedicated focus groups and together with application experts. 

The current structure is not final and will develop over time. In addition, the project does not aim at providing 

a complete pattern library at the end but a knowledge structure with content that can be edited and extended 

beyond the project and within the community. This way, the library is, in this deliverable, formulated as a 

requirement to cover knowledge and needs from a pattern perspective. 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 53 of 59 

 

7 Conclusion 

The initial phase of the CPSwarm project focused on the specification of use cases, the definition of its 

stakeholders, as well as the description of the communication flow between them. Beyond, it focuses on the 

workflow of the workbench and on the vision of the deployment of CPSwarm workbench in practice.  

 

One of the objectives of the present deliverable was to establish a common ground on which the remaining 

WP2 tasks, and later the remaining technical WPs (WP3 to WP7), will build their foundations towards the 

demonstration (WP8). The work in WP2 follows a scenario-driven approach, starting with the formulation of 

vision towards which the project will develop. The visions serve as basis for identifying involved stakeholders, 

available knowledge, used technologies as well as their interplay and data flow. From the basic set of use cases, 

further specifications of workflows performed with the help of the CPSwarm workbench will evolve.  

 

The analysis presented in this deliverable started with the description of the Volere requirements scheme that 

is used throughout this deliverable to specify requirements. The process of requirement engineering in D2.7 

proceeds by taking one step forward from the user needs and requirements identified in D2.3 and D2.6. In D2.3 

we extracted user roles who interact with workbench and alter the communication flow between them by 

dividing it into four phases; Design, Implementation, Deployment and Operation phase. From the perspective 

of each user role, we defined user needs in the form of user stories. The next step was to translate these user 

needs into abstract workbench components and to define flow of information between them. The 

responsibilities of these workbench components and the data flow between them were defined in the form of 

technical requirements. D2.7 contains the reiteration of these user needs and requirements. In addition to the 

requirements, D2.7 also contains an updated set of lessons learned during the design and implementation of 

various components of the workbench.  

 

The requirements specified in this version of the deliverable are to be seen as the final iteration in the scope 

of remaining WP2 tasks and WPs 3 to 8. By defining a common set of user needs and Volere requirements, this 

deliverable D2.7 laid the foundation that will be used in further implementation in the technical WPs. 

 

Conclusively, this deliverable documented the iterative process of ideation and concept development in order 

to identify various user needs. In addition to the user needs, the identification and specification of Volere 

requirements related to the workbench components and their lessons learned are significant results from this 

task that will be used as input to subsequent activities of the project. 

 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 54 of 59 

 

  



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 55 of 59 

 

Appendix A 

WP2 will address the demand for safety and security requirements to pay attention to in a living document as 

part of the CPSwarm Libraries in the sense of background knowledge and things application engineers and 

domain experts need to know when designing an application via the CPSwarm workbench. This way, the 

library and knowledge gathering can stay alive and be extended. 

All partners, especially from the application domains have a strong security background and were asked to 

provide references to existing 

 regulations,  

 norms,  

 laws, 

 rules, 

 guidelines  

for swarm application design.  

Aeronautics sector (predominantly DigiSky) 

As regards UAVs and drones, a basic reference Regulations does not exist. The European Commission, in 

accordance with the European Aviation Safety Agency, is working a on mid-term project to develop a standard 

regulation to increase safety operations with unmanned vehicles.  

 A first step is the EU Reg. 2018/1139.  

 Some basic information and guidelines for drones operations are available on the EASA website2.  

Related to the link, there are lots of general safety/operational publications and articles with interesting 

points of view and opinions on the problem.  

 On the Member States of European Union, every national authority has the possibility to follow the 

national laws approved by governments. For example, in Italy, the aviation authority has developed 

different regulations like: 

o Remotely Piloted Aerial Vehicles Regulation 

o Air Rules 

 It is very important to verify in every country the applicable laws and regulations regarding unmanned 

vehicles. Some guidance instructions and rules are available also in EN9100:2018 that define quality 

assurance requirements for aerospace products (control on design and development, production. 

 In a perspective of a global Safety analysis of a typical CPSwarm scenario, useful material could be 

found in the International Civil Aviation Organization (ICAO) “Safety Management Manual” 

Doc.9859, with the complete overview and process description of a Risk Management Analysis. 

 Other norms not directly related: ISO 13849-1:2015 Safety of machinery, ISO 13850:2015 Standard 

specifies functional requirements and design principles for the emergency stop function on machinery 

and IEC 60204-1:2016 Safety of machinery - Electrical equipment of machines. 

  

                                                
2 https://www.easa.europa.eu/easa-and-you/civil-drones-rpas 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 56 of 59 

 

Unmanned Vehicles   

 ISO/TS 15066:2016 applies to industrial robot systems as described in ISO 10218?1 and ISO 10218?2. It 

does not apply to non-industrial robots, although the safety principles presented can be useful to other 

areas of robotics. We are using the general principles for the risk assessment. 

 Novelties on service robotics are managed by Technical ISO Committee TC299: 

https://www.iso.org/committee/5915511/x/catalogue/p/0/u/1/w/0/d/0 

o New developments are carried on ISO/CD 22166-1.2, “Robotics- Modularity for service robots 

- Part 1: General Requirements” [4], which is not available yet. 

o We are still using an old norm that applies for unmanned vehicles: 

o EN 1525:1997: Safety of industrial trucks - Driverless trucks and their systems 

Other norms not directly related 

 ISO 13849-1:2015 Safety of machinery. Provides safety requirements and guidance on the principles 

for the design and integration of safety-related parts of control systems (SRP/CS), including the design 

of software. 

 ISO 13850:2015 Standard specifies functional requirements and design principles for the emergency 

stop function on machinery, independent of the type of energy used. 

 And in general,  IEC 60204-1:2016 Safety of machinery - Electrical equipment of machines - Part 1: 

General requirements 

Norms with regard to cyber-security 

 Information technology -- Security techniques -- Information security management systems -- 

Requirements: ISO/IEC 27001 

 Common Criteria for Information Technology Security Evaluation: ISO/IEC 15408 

 OWASP Software Assurance Maturity Model - prescriptive framework for securing the development 

process:  

https://github.com/OWASP/samm/raw/master/Supporting%20Resources/v1.5/Final/SAMM

_Core_V1-5_FINAL.pdf 

 Build Security In Maturity Model - descriptive framework for identifying security activities used in 

the real world:  

https://www.bsimm.com/content/dam/bsimm/reports/bsimm9.pdf 

 Build Security In - best practices for secure software design and implementation:  

https://www.us-cert.gov/bsi 

 Software Assurance Forum for Excellence in Code (SAFECode) - fundamental rules for secure 

software development:  

https://safecode.org/wp-

content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Develo

pment_March_2018.pdf 

 Microsoft Security Development Lifecycle (SDL) - prescriptive framework for securing the 

development process:  

https://www.microsoft.com/en-us/securityengineering/sdl/ 

https://www.iso.org/committee/5915511/x/catalogue/p/0/u/1/w/0/d/0
https://github.com/OWASP/samm/raw/master/Supporting%20Resources/v1.5/Final/SAMM_Core_V1-5_FINAL.pdf
https://github.com/OWASP/samm/raw/master/Supporting%20Resources/v1.5/Final/SAMM_Core_V1-5_FINAL.pdf
https://www.bsimm.com/content/dam/bsimm/reports/bsimm9.pdf
https://www.us-cert.gov/bsi
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf
https://www.microsoft.com/en-us/securityengineering/sdl/


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 57 of 59 

 

 International Council on Systems Engineering: Systems Security Engineering working group 

(INCOSE SSE):  

https://www.incose.org/incose-member-resources/working-groups/analytic/systems-

security-engineering 

 Team Software Process for Secure Systems Development (SEI-CERT, 2002):  

https://apps.dtic.mil/dtic/tr/fulltext/u2/a634138.pdf 

 SEI CERT C Secure Coding Standard:  

https://wiki.sei.cmu.edu/confluence/display/c 

 SEI CERT C++ Coding Standard:  

https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682 

 

Automotive sector (predominantly TTTECH) 

From the experts in this domain, no further explicit guidelines were mentioned adding the one already 

stated. 

Acronyms 

 

Acronym Explanation 

CPS Cyber Physical System 

CI Continuous Integration 

GUI Graphical User Interface 

HW Hardware 

 

List of figures 

Figure 1: The CPSwarm Workbench development lifecycle ................................................................................................................................ 7 

Figure 2: The Volere “Requirements Shell” for representing atomic requirements [11] ......................................................................... 8 

Figure 3: Screenshot of the user need creation dialog in CPSwarm ................................................................................................................ 9 

Figure 4: Screenshot of the Volere Requirement creation dialog in CPSwarm ......................................................................................... 10 

Figure 5: State diagram of issue type “User Need” ............................................................................................................................................... 11 

Figure 6: State diagram of issue type “Volere Requirement” ............................................................................................................................ 11 

Figure 7: Screenshot of the current pattern library structure .................................................................................................................. 51 

 

List of tables 

Table 1: Lessons learned for Modelling Library ...................................................................................................................................................... 41 

Table 2: Lessons learned for Modelling ...................................................................................................................................................................... 41 

Table 3: Lessons learned for Optimization ................................................................................................................................................................ 42 

Table 4: Lessons learned for Simulation ..................................................................................................................................................................... 43 

Table 5: Lessons learned for Code Generation........................................................................................................................................................ 45 

Table 6: Lessons learned for Abstraction Layer ....................................................................................................................................................... 45 

Table 7: Lessons learned for Deployment ................................................................................................................................................................. 45 

Table 8: Lessons learned for Monitoring Tool ......................................................................................................................................................... 46 

https://www.incose.org/incose-member-resources/working-groups/analytic/systems-security-engineering
https://www.incose.org/incose-member-resources/working-groups/analytic/systems-security-engineering
https://apps.dtic.mil/dtic/tr/fulltext/u2/a634138.pdf
https://wiki.sei.cmu.edu/confluence/display/c
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046682


 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 58 of 59 

 

Table 9: Lessons learned for Continuous Integration ........................................................................................................................................... 47 

 

 

References 

[1] Chin, G., M.B. Rosson, and J.M. Carroll. Participatory analysis: shared development of requirements 

from scenarios. In SIGCHI conference on Human factors in computing systems. 1997. 

[2] Easterbrook, S., Negotiation and the Role of the Requirements Specification. Appears in P. Quintas 

(ed.) Social Dimensions of Systems Engineering: People, processes, policies and software development, 

1993: p. 144-164. 

[3] Glinz, M., Improving the Quality of Requirements with Scenarios, in Proceeding of the Second World 

Conference on Requirements Engineering. 2000: Schaumburg. p. 254-271. 

[4] Holbrook H., I., A scenario-based methodology for conducting requirements elicitation SIGSOFT Softw. 

Eng. Notes 1990 15 (1 ): p. 95-104  

[5] ISO, ISO 9241-210:2010 Ergonomics of human-system interaction – Part 210: Human-centred design 

for interactive systems. International Organization for Standardization, 2010. 

[6] Jarke, M. and K. Pohl, Requirements engineering in 2001: (virtually) managing a changing reality. IEEE 

Software Engineering, 1994. 9(6). 

[7] Penna, G.D., et al., An XML Definition Language to Support Scenario-Based Requirements Engineering. 

International Journal of Software Engineering and Knowledge Engineering, 2003. 13(3): p. 237-256. 

[8] Ramesh, B. and M. Jarke, Toward Reference Models for Requirements Traceability. IEEE Trans. Softw. 

Eng., 2001. 27(1): p. 58-93. 

[9] Robertson, J. and Robertson, S.; Mastering the Requirements Process. 1999: Addison-Wesley. 

[10] Robertson, J. and Robertson, S.; Requirements-Led Project Management. 2004: Addison-Wesley. 

[11] Robertson, J. and Robertson, S.; Volere Requirements Specification Template. 2010. 

[12] Stufflebeam, W., A.I. Antón, and T.A. Alspaugh. SMaRT – Scenario Management and Requirements 

Tool. In 11th IEEE International Requirements Engineering Conference. 2003. 

[13] Sutcliffe, A.G., W.-C. Chang, and R. Neville, Evolutionary Requirements Analysis, in 11th IEEE 

Requirements Engineering Conference. 2003. 

[14] Sutcliffe, A.G. Scenario-based Requirements Engineering. In 11th IEEE International Requirements 

Engineering Conference (RE'03). 2003. 

[15] Zimmerman, J., Stolterman, E., and Forlizzi, J. An Analysis and Critique of Research through Design: 

Towards a Formalization of a Research Approach. In Proceedings of the 8th ACM Conference on 

Designing Interactive Systems, 2010: ACM Press, p. 310–319. 

[16] Design, Venture, The Inter-disciplinarian, and About Me. "Your Best Agile User Story". Alex Cowan. N.p., 

2017. Web. 18 June 2017. 

[17] Gomaa, H. and D.B.H. Scott. Prototyping as a tool in the specification of user requirements. In 

Proceedings of the 5th international conference on Software engineering. 1981. San Diego, California, 

United States. 

[18]  M. Piscopo, “Lessons Learned,” Lessons Learned Template. [Online]. Available: 

http://www.projectmanagementdocs.com/project-closing-templates/lessons-

learned.html#axzz55ll5w9dT. [Accessed: 04-Jan-2018] 

[19] Alexander, C;. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New York, 

NY, USA, 1977. 

[20] Gamma, E. and Helm, R. and Johnson, R.  and Vlissides, J.; Design Patterns. Elements of Reusable 

Object-Oriented Software. Addison-Wesley Longman, Amsterdam, 1994. 

[21] Manns, M., and Rising L.; Fearless Change: Patterns for Introducing New Ideas: Introducing Patterns 

into Organizations. Addison-Wesley, Boston, MA, USA, 2005. 

[22] Tidwell J.; Designing Interfaces. O’Reilly Media, Sebastopol, CA, USA, 2nd edition, 2011. 

[23] Van Duyne, D., and Landay J., and Hong J.; The Design of Sites: Patterns for Creating Winning Websites. 

Prentice Hall, 2nd edition, 2007. 



 

Deliverable nr. 

Deliverable Title 

Version 

D2.7 

Final Lessons Learned and Requirements Report 

1.1 - 02/08/2019 

Page 59 of 59 

 

[24] Borchers, J.; A Pattern Approach to Interaction Design. John Wiley & Sons, West Sussex, England, 1st 

edition, 2001. 

[25] Reiners, R.; An Evolving Pattern Library for Collaborative Project Documentation. Shaker, 2014. 

 

 

 

 

 

 

 

  


