

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D4.3 – FINAL CPS MODELLING LIBRARY

Deliverable ID D4.3

Deliverable Title Final CPS modelling library

Work Package WP4 – Models and algorithms for CPS Swarms

Dissemination Level PUBLIC

Version 1.0

Date 02-01-2020

Status Final

Lead Editor Etienne Brosse (SOFTEAM)

Main Contributors Alessandra Bagnato (SOFTEAM), Melanie Schranz, Micha

Rappaport (LAKE), René Reiners (FRAUNHOFER)

Published by the CPSwarm Consortium

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 2 of 31

Document History

Version Date Author(s) Description

0.1 2019-07-15
Etienne Brosse

(SOFTEAM)
First Table of Content.

0.2 2019-09-06
Melanie Schranz

(LAKE)
Add Design Pattern Approach

0.3 2019-09-10
Micha Rappaport

 (LAKE)
Add Modelling Library Concepts

0.4 2019-10-07

Melanie Schranz

(LAKE)

Rene Reiners

(FRAUNHOFER)

Clean Design Pattern Approach

0.5 2019-10-10
Etienne Brosse

(SOFTEAM)
Polishing and cleaning.

0.5.1 2019-10-07
Rene Reiners

(FRAUNHOFER)
Clean Design Pattern Approach

0.6 2019-10-10
Etienne Brosse

(SOFTEAM)
Polishing and cleaning.

1.0 2020-01-02
Etienne Brosse

(SOFTEAM)
Final version

Internal Review History

Review

Date
Reviewer Summary of Comments

2019-12-19
Farshid Tavakolizadeh

(FRAUNHOFER)
Comments and minor modifications

2019-12-19
Gianluca Prato

(LINKS)
Minor modifications introduced

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 3 of 31

1 Executive summary

This deliverable, namely “D4.3 - Final CPS modelling library”, is a deliverable of the CPSwarm project, funded

by the European Commission’s Directorate- General for Research and Innovation (DG RTD), under its Horizon

2020 Research and innovation program (H2020).

CPSwarm main’s goal consists on developing a workbench that aims to fully design, develop, and validate

swarm solution. In this project, Work Package 4 focuses on how CPS swarm can be model. Which aspects are

needed? What concepts must be depicted? Which formalizes are the more useful? etc. To illustrate and

distribute the result of this research, a set of models are publicly available. These models depict CPS swarm

through specific aspect (Hardware architecture, swarm member behaviour, internal interaction, external

interaction). Finally, this deliverable shows the different models designed for Cyber-Physical Systems (CPS)

Swarm design at M35 of the CPSwarm project.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 4 of 31

Table of Contents

Document History .. 2

Internal Review History .. 2

1 Executive summary .. 3

Table of Contents ... 4

2 Introduction .. 5

2.1 Scope .. 5

2.2 Document organization ... 5

2.3 Related documents.. 5

3 CPSwarm Modelling library .. 6

3.1 Hardware Components .. 6

3.2 Software Components.. 7

3.3 Abstraction Library .. 7

3.4 Communication Library ... 8

3.4.1 Description .. 8

3.4.2 Modelling .. 9

4 Available CPS Models ... 10

4.1 Spiderino ... 10

4.1.1 Hardware Design ... 10

4.2 Drone .. 12

4.2.1 Hardware design ... 12

4.2.2 Behaviour modelling .. 13

4.3 Rover ... 15

4.3.1 Hardware Design ... 15

4.3.2 Behaviour Modelling.. 16

4.4 Turtlebot .. 17

4.4.1 Hardware Design ... 17

4.4.2 Behaviour Modelling.. 18

5 Design Patterns for Human2Swarm Interaction .. 19

5.1 Organization of the Design Patterns .. 20

5.1.1 Laws .. 21

5.1.2 Behaviour.. 21

5.1.3 Safety ... 21

5.1.4 Human Influence ... 22

5.1.5 Data Management .. 22

5.1.6 Privacy .. 23

5.2 Implemented Design Patterns .. 23

6 Conclusions ... 28

Annex A .. 29

References ... 31

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 5 of 31

2 Introduction

D4.3 – “Final CPS modelling library” is a public document describing the publicly available CPS models designed

till M35 in the CPSwarm project.

SOFTEAM, as deliverable leader, initially drafted the document, which has subsequently been enriched by all

partners’ contributions with existing publicly available CPSs models.

2.1 Scope

This deliverable provides a description of the current models specified within CPSwarm project during

preliminary or study phase but also within the three CPSwarm case studies. Based on previous studies –

published in D4.1 and D4.2- the models depicted here represent the three relevant aspects of a CPS swarm i.e.

CPS designs (Hardware and Behaviour description), the Communication between CPSs and CPS/Human

interaction. Models or part of these models of these aspects have been designed and publicly published inside

libraries.

2.2 Document organization

The remainder of this deliverable is organized as follows:

Section 3 describes the CPSwarm modelling library, which provides - among other - a set of elements for CPS

modelling. Section 4 presents four CPS designs made on top of the CPSwarm modelling library, presented in

the previous section. In CPSwarm project, CPS modelling do not only deal with the CPS description, but also

with the concept around them. The Human aspect modelling is depicted in Section 5. Finally, Section 6 draws

conclusions.

2.3 Related documents

ID Title Reference Version Date

[D4.1] Initial CPS Modeling Library D4.1 1.0 2017-10-06

[D4.2] Updated CPS Modeling Library D4.2 1.0 2018-10-06

[D5.3] Updated CPSwarm Modelling Tool D5.3 1.0 2018-06-30

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 6 of 31

3 CPSwarm Modelling library

The modelling of the CPSs considers the hardware as well as their behaviour of the CPSs.

3.1 Hardware Components

One main aspect of modeling a CPS consist in specifying its architecture in terms of hardware components. In

CPSwarm context, three kind of hardware components have been defined. This specification is made in two

steps: First, the list of internal components (which can be a controller, a sensor, or an actuator component)

must be defined. Each of this internal component must expose the data it provides or requires. Figure 1

represents two simple hardware components respectively named CNY70 and Locomotion. The CNY70 is a light

sensor providing the light level as a double. The Locomotion actuator needs a 2D Pos to be able to move to

the specified location.

The second steps in modelling the CPS hardware architecture consists in instantiate each appropriate

component and connect them between each other. In Figure 2, the components predefined previously has

been instanced twice and each port has been connected to model the data flow between the internal

components.

Figure 1: Models of different types Hardware Components.

Figure 2: Simple Hardware CPS.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 7 of 31

3.2 Software Components

The software component models define the behavior of each CPS. They are modeled in order to describe how

the CPS behaves by interacting with the environment and the other CPSs in the swarm. The behaviors are

defined in a way that the CPS swarm completes the mission that is intended by the designer of the swarm

system. Designing the behavior of individual agents in a swarm is a difficult task because the emergent swarm

behavior that should complete a mission effectively is not easily predictable. By modeling the behavior on an

abstract level facilitates the process by allowing to execute it on different realism levels. This bottom-up

approach allows to iteratively refine the individual behaviors until a global swarm behavior is reached that

completes the mission effectively. The formal behavior models allow to speed up the design process by

automatically generating the code to be executed on the CPSs, either in simulation or in real-world

experiments.

The behavior models are placed within different libraries that contain software artifacts. They are modeled as

the states of FSMs. This allows to build a modular open source repository of swarm behaviors to be executed

on different type of CPSs. An initial version of the libraries will be available on the CPSwarm Github repository1.

On the one hand, it features different platform independent swarm behaviors in the Swarm Library (see

Deliverable 4.6). On the other hand, it features ROS based Abstraction Libraries for UAVs using the MAVLink

protocol2 and UGVs using the ROS navigation stack3.

3.3 Abstraction Library

The Abstraction Library allows to access the hardware provided by the CPS. It guarantees the support of

controlling several types of sensors such as ultrasonic range sensors, cameras, or GPS, and driving actuators

such as grippers, motors and servos. It raises the level of abstraction from a platform-dependent point of view

to an application-oriented perspective. Furthermore, the Abstraction Library provides facilities to easily develop

high-level routines. It shifts the focus of the developer from coding CPS specific implementations to swarm

behavioral executions. This allows to concentrate on describing how the CPSs should behave in order to

complete a high-level task or reach an application-specific goal. This is achieved by the Abstraction Library by

providing a set of CPS-specific adaptation libraries in order to access platform-specific information of a CPS in

a standard and coherent way.

To achieve this, the Abstraction Library is organized as a composition of three layers as shown in Figure 3 where

each layer adds a level of hardware abstraction. First, the bottom most layer of Hardware Drivers gathers the

software libraries that are responsible to enable the other layers to access the hardware functionalities. This

1 https://github.com/cpswarm

2 https://mavlink.io

3 https://wiki.ros.org/navigation

Figure 3: The abstraction library structure.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 8 of 31

layer constitutes the foundation of the Abstraction Library and includes all the drivers for sensors and actuators

that are mounted on the CPSs. Second, the Sensing and Actuation layer is responsible for providing sensor

information and for controlling the CPSs using their actuators. While the Hardware Drivers layer has a direct

connection with the hardware, this layer purely consists of software that contributes to supply a first degree of

abstraction by realizing complex functionalities required by the overlying layer. Depending on the available

computational power, memory, and hardware resources, this layer can be presented as an independent

component or incorporated inside the Hardware Drivers layer. Finally, the topmost layer of hardware functions

exhibits a set of high-level functions corresponding to complex routines that a CPS can execute involving a set

of sensors and actuators. Each function interacts with the lower layers for sending actuator commands and

requesting sensor information. Each function of this layer constitutes a base building block to define a state of

the FSMs. A single state can be associated to a specific function of the Abstraction Library that will be executed

while the state is active. Therefore, this layer supports two essential features. First, the application of model-

driven techniques based on the design of FSMs that will speed up the development process to realize new

CPSs behaviors. Second, the mapping of CPS's functionalities to specific software modules that can guarantee

the reusability of those functionalities. The hardware functions are defined as UML simple states to be used in

the complex behavior FSMs.

3.4 Communication Library

3.4.1 Description

The Communication Library provides a unified interface tools and swarm members can use to interact with

each other. It is the duty of the library to ensure that all communications happen with the desired reliability,

security level and latency. After evaluating the requirements established by our core use cases and the design

goals of a swarm in general, we concluded that interactions have a well-defined set of primitives and actions:

 Swarm members need to be discoverable on the network

 Events and commands need to be sent and received

 Parameters need to be remotely adjustable

 Telemetry needs to be sent back to operators and other subscribers

Communication Library aim is to provide a stable API for all tools that abstracts away the physical layer and

the authentication scheme used. To do this, a pluggable architecture was designed for the Communication

Library, which separates the logical layer responsible for implementing these primitives and the endpoint

implementation capable of sending individual messages over the network. This extensible infrastructure makes

it possible to add support for new low-level protocols, physical layers and security schemes without affecting

the rest of the system. As a first step, the Zyre protocol was integrated with the library, but as the project

progresses, a secure endpoint will be added as well.

The key concepts of the Communication Library are the following:

 High level C++ API;

 Abstracts away the physical and transport layers;

 Responsible for reliable delivery and fault detection;

 Exposes functionality through services;

 Protobuf based serialization;

 The API works with Protobuf objects directly;

 Objects can be reserialized at any points;

 Complex data types can be defined (area, route, etc.);

 Cross-platform;

 Uses only C++ standard library primitives and other cross-platform libraries;

 Compatible with ROS.

So, the Communication Library is used to abstract away the transport and physical layer. Endpoint

implementations based on BasicEndpoint only need to implement:

 Starting and stopping the endpoint

https://developers.google.com/protocol-buffers/
http://www.ros.org/about-ros

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020
Page 9 of 31

 Sending binary messages

 Receiving binary messages

 Tracking the presence of nodes

While we are targeting IP networks (including mesh networks), the library doesn’t care about the medium. Zyre

based implementation is available now.

Since our primary targets are ROS based devices, support for ROS native facilities needed to be a lot more in-

depth. Communications within ROS use a proprietary messaging format and protocol – support for this is not

available on non-ROS systems. A bridge node was developed, which can translate between a ROS based system

and the rest of the world:

 Publishing any ROS topic as telemetry

 Forwarding events to and from the behavior

 Setting parameters on the ROS Parameter Server

 Using the communication node, applications developed or behaviour generated for ROS based devices

can use native ROS facilities and need not care about the presence of the library. The bridge is just

another application using the library – it receives no special treatment.

 Using standard ROS facilities to communicate

 Bridge the Key-Value Service to ROS Parameter Server

 Transfer events and telemetry through ROS publish-subscribe

 Bind to ROS resources as defined in a configuration file

 Should be part of the deployment package

 Reloadable without interruption

 Should be one of the first things to install on a node during provisioning

 Cryptographic proof of swarm membership will need to be established

 Network interfaces need to be configured

3.4.2 Modelling

At the modelling level, Communication Library key concepts must be implemented inside CPSwarm modelling

library in order to able to generate communication library configuration. For example, in Figure 4 represents a

simple drone in which “reportInterval” property of type “UInt” is published to the whole world. A “Simple Event”

named “launch” and a “LocalTargetPositionEvent” named “target_found” are respectively specified as incoming

and outcoming events.

Figure 4: Modelling usage of CPSwarm communication library.

The resulting communication configuration, generated from the previous Figure, is available in Annex A.

https://github.com/zeromq/zyre

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 10 of 31

4 Available CPS Models

This section describes the status of three CPSs designed on top of the CPSwarm modelling library (Section 3).

Each model presents a different state of maturity mainly depending of its complexity and level of detail needed

but each of them has been publicly published inside one of the modelling project available at

http://forge.modelio.org/projects/cpswarm-modelio38/files. The first one is called “Spiderino” which has been

modelled at the beginning of CPSwarm project with a focus on its hardware aspect. Two other CPS named

“Drone” and “Rover”, which are CPSs used in “Search And Rescue” case study are described in more detail and

both Hardware and Behaviour aspects have been sketched. Note that these two models will continue to evolve

during CPSwarm project.

4.1 Spiderino

The Spiderino is a low-cost robot for research and educational purposes. As shown in Figure 5, Spiderino is a

small spider robot equipped with several embedded sensors.

Figure 5: Spiderino robot

The main goal of this model was to test and evaluate CPSwarm Hardware design facilities in a simple project.

The result of this designing activity is presented in the following section.

4.1.1 Hardware Design

As presented in Figure 6, a Spiderino is composed of five light sensors – respectively named rs1, rs2, rs3, rs4

and rs5 – of type CNY70. Two motors or locomotion components are also present as a GP2D2 sensor able to

calculate the distance between a Spiderino and its environment. Finally, the BEECLUST component holds the

Swarm Algorithm/ CPS behaviour which consists in a UML State Machine implementation of one Bee

Algorithm.

http://forge.modelio.org/projects/cpswarm-modelio38/files
https://www.vishay.com/docs/83751/cny70.pdf
https://engineering.purdue.edu/ME588/SpecSheets/sharp_gp2d12.pdf
https://en.wikipedia.org/wiki/Bees_algorithm
https://en.wikipedia.org/wiki/Bees_algorithm

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 11 of 31

Figure 6: Spiderino hardware architecture

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 12 of 31

4.2 Drone

Drones in SAR missions are aiming to find target(s) by covering a predefined area. To do so a drone needs to

embed different components, described in 4.2.1.

4.2.1 Hardware design

The Drone platform selected for the implementation of the SAR demonstration, shown in Figure 7, is composed

by the following devices:

 One PX4 flight stack as a complete Flight Controller solution;

 One nano-pi board as Companion Computer to run the CPSwarm Abstraction Layer with the relevant

Library;

 One LiPo battery;

 One Telemetry Radio;

 Three Sonars to avoid collision with another drone or obstacle;

 One “beacon” for measuring the global position of the rover. Two options are available:

o An Ultra-Wide Band (UWB) node to measure the current position in indoor environments;

o A Global Positioning System (GPS) module to measure the current position in outdoor

environments;

 Four Motor to make the rover able to move;

 One Communication Interface for the communication with the other Rovers and Drones, and the

Monitoring Tool;

 One CMOS OV5640 camera: to find target to rescue.

Figure 7: Drone platforms

The following model -cf. Figure 8- is an abstraction view of the Drone hardware described previously. The

model depicts:

 The SAR_Behaviour component holding CPS behaviour.

 Three sonars, named ps1, ps2 and ps3, which gives the distance to the closest object,

 One camera measuring the distance,

 One UWB giving the local position of the device,

 Two locomotion components respectively in charge of moving -forward or backward - and turning -

left or right.

http://www.arducam.com/camera-modules/5mp-ov5640/

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 13 of 31

Figure 8: Drone hardware description

4.2.2 Behaviour modelling

The main goal of a Drone is to find target by firstly covering dedicated space. Figure 9 is a UML state Machine

representation of how the Drone will achieve its goal. As for the rover, the drone behaviour starts by the

“StartUp” State before the “Idle” one. The mission is started once the drone receives a signal from the

monitoring tool (outside the swarm). The Drone takes off and start covering dedicated space. If the drone finds

a target, it broadcast the event to the Rovers, which negotiate among them which one has to be assigned to

reach the target. The drone keeps tracking the target until it receives a rescued signal from the assigned rover.

Then the drone restarts to look for a new target.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 14 of 31

Figure 9: Drone behaviour

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 15 of 31

4.3 Rover

Heterogeneous swarms of ground robots/rovers and drones are considered within the CPSwarm project to

conduct certain missions, such as in Search and Rescue (SAR) tasks. The current section shows both Hardware

and Behaviour aspects of a rover/ground robot.

4.3.1 Hardware Design

The Rover platform selected for the implementation of the SAR demonstration, shown in Figure 10, is

composed by the following devices:

 One Pixhawk Flight Controller with ArduPilot Autopilot Software Suite;

 One nano-pi board as Companion Computer to run the CPSwarm Abstraction Layer with the relevant

Library;

 One LiPo battery;

 One Telemetry Radio;

 One Sonar to avoid collision with other rovers or obstacles;

 One “beacon” for measuring the global position of the rover. Two options are available:

o An Ultra-Wide Band (UWB) node to measure the current position in indoor environments;

o A Global Positioning System (GPS) module to measure the current position in outdoor

environments;

 One Motor to make the rover able to move;

 One Communication Interface for the communication with the other Rovers and Drones, and the

Monitoring Tool.

Figure 10: Rover platform

The following model -cf. Figure 11- is an abstraction view of the Drone hardware described previously. The

model depicts:

 The rover behaviour component holds the CPS behaviour.

 The s sonar that gives the distance to the object,

 One UWB giving the local position of the device,

 one motor components respectively in charge of moving -forward or backward - and turning - left or

right.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 16 of 31

Figure 11: Rover hardware description

4.3.2 Behaviour Modelling

Rovers in SAR missions are aiming to guide a target to an exit. To do so the behaviour shown in Figure 12 has

been made. Firstly, the rover is started and passes to the “Idle” mode waiting for a Drone to find a target. Once

a target is found by a Drone, the assigned rover has to “move to the target”. Then it guides the assigned target

to an exit before coming back to the “Idle” state waiting another target to be found.

Figure 12 Rover behaviour

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 17 of 31

4.4 Turtlebot

Heterogeneity in swarm of CPS does not mean that each type of swarm member must be completely different

from the others. Swarm member can share common hardware structure and behaviour parts. In Logistics

scenario, two type of CPS, named scout and worker, have some modelling component in common. The current

section shows both Hardware and Behaviour aspects of a scout CPS which are specialized from general

turtlebot platform.

4.4.1 Hardware Design

The components that make up the hardware architecture, shown in Figure 13, are:

 A turtlebot 2 with a kobuki base and three heights of hexagons;

 An Intel NUC i5-8 Gb of RAM and 128GB SSD. Dual band Wireless (802.11ac) and Bluetooth 4.2;

 A RPLidar A2 sonar with 360 degrees, 12-18m range detection and 8000 Samples per time);

 A FLIR Chameleon CM3.camera for scouts or a SKF cahb 10 linear actuator (elevator) for workers.

Figure 13: Turtlebot platform

The following model -cf. Figure 14 - is an abstraction view of the scout hardware described previously. The

model depicts:

 The Scout Controller component holding CPS behaviour;

 The RPLidar A2 sonar that gives the distance to the closest object;

 One FLIR Chameleon camera scanning QR code;

 One locomotion components in charge of moving the CPS.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 18 of 31

Figure 14: Scout hardware description

4.4.2 Behaviour Modelling

Scouts, in Logistics scenario, are aiming to localize cart that workers will move. To do so the behaviour, shown

in Figure 15Figure 12 ,has been made. Firstly, the scout is started and passes to the “Idle” mode waiting for an

operator start the mission. Once a cart is found by a scout, it assigns a worker to it before coming back to the

“Scouting” state waiting another cart to be found.

Figure 15: Scout behaviour

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 19 of 31

5 Design Patterns for Human2Swarm Interaction

Additionally, to the CPS models and behavior libraries, we provide a library with design patterns that describe

rules and guidelines for the usage of CPS swarms. The concept of design patterns, how to build them and to

structure them, were already described in Deliverable D4.2 – Updated CPS Modelling Library.

The design pattern library contains safety regulations related to the use case in logistics. Thus, a set of design

patterns explains what we need to take care of when deploying a swarm of UGVs in a logistics environment.

The library can be found on the web via https://patterns.fit.fraunhofer.de/cpswarm/index.php/browse-patterns

and will be part of the final CPSwarm workbench source code documentation on git.

The library has following layout:

https://patterns.fit.fraunhofer.de/cpswarm/index.php/browse-patterns

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 20 of 31

Figure 16: CPSwarm Pattern Library Layout

5.1 Organization of the Design Patterns

The design patterns are organized in the following categories, whereby the green-marked patterns indicate

their implementation throughout the project and the ones different with another logo (not CPSwarm) were

reused from other projects. The categories are not in a strict hierarchical order but introduce a view from very

global aspects, like laws “down to” data management. As baseline, privacy considerations are discussed. The

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 21 of 31

structure at the moment suits best to follow general rules and guidelines leading to safety patterns and patterns

dealing with human behavior. In later iterations, the order may change for the sake of readability.

5.1.1 Laws

Patterns in the laws category, as shown in Figure 17, deal with general rules on how autonomous vehicles must

behave in any way. From the “Avoid Human Injuries“ patterns, the behaviour and configuration of the

warehouse swarm system is derived. The pattern itself is derived from a consideration of “Asimov’s Laws”.

Figure 17: CPSwarm Laws Patterns

5.1.2 Behaviour

These patterns, depicted in Figure 18, describe general behaviours and qualities of the swam, like when to

“Continue Operations”, going to “Safety Mode” in case of an uncertain or critical situation. Other behaviours

after accidents or collisions or emergency stops are also discussed for further aspects of swarm scenarios.

Figure 18: CPSwarm Behaviour Patterns

5.1.3 Safety

The Safety patterns, depicted in Figure 19, deal with questions on how to preserve human safety by keeping

distances, detecting obstacles or going to emergency mode behaviours and changing task organizations due

to safety restrictions.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 22 of 31

Figure 19: CPSwarm Safety Patterns

5.1.4 Human Influence

This category, shown in Figure 20, deals with aspects on how humans that are present beside swarm should

be integrated in the planning and execution of tasks as well as directly influencing the swarm’s behaviour. For

instance, changes in current operations may become necessary or the human needs measures to interact with

the swarm.

Figure 20: CPSwarm Human Influence Patterns

5.1.5 Data Management

This category, as depicted in Figure 21, includes a first set of more technical patterns on how to deal with

questions related to data acquisition, exchanging and using data for operations planning. Here, future

implementations leading to best practices should help collecting and extending the patterns library at this

point.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 23 of 31

Figure 21: CPSwarm Data Management Patterns

5.1.6 Privacy

Patterns related to privacy related questions, as shown in Figure 22, for implementation that occur in any kind

of information system where (sensor) data is collected and analyzed. Here, designs and decisions can be made

early in the engineering process.

Figure 22: CPSwarm Privacy Patterns

5.2 Implemented Design Patterns

As already mentioned, the green-colored patterns where implemented as part of the logistic swarm use case.

In the following tables you can find the individual description of the design patterns, that can be found online

in the following form:

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 24 of 31

Figure 23: Avoid Human Injuries Pattern

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 25 of 31

Table 1: Collision Avoidance Description

Name Safety Zones

Pattern Context In case an obstacle or human gets in the way of the route of the UGV, the behavior

needs to be adapted such that the UGV can avoid collision or check whether the

environment changes again, e.g., because a human step out of the way or the obstacle

is removed.

Problem Summary Depending on the distance to obstacles different strategies to react need to be

applied reaching from slowing down to full stop.

Problem Details

Solution Summary Define safety zones depending on the distance and adjust the UGVs behavior

accordingly

Solution Illustration

Solution Details Defined safety zones from the center of the robot (cf. ISO 1525-1997):

.5m: danger area (reduced speed)

.25m safety area (emergency stop)

Related Pattern

References

Table 2: Safety Zones Description

Name Avoid Human Injuries

Pattern Context It is mandatory to detect humans in order to avoid injuries (cf.

safety regulations at ISO 1525-1997:

https://webstore.ansi.org/Standards/DIN/DINEN15251997).

Problem

Summary

Collisions between UGVs and humans are highly dangerous and

may cause severe injuries or even causalities. Collisions with

humans MUST be avoided at any cost.

Problem Details Identify humans

Solution

Summary

To avoid injuries several possibilities exist:

Work in a safety mode (reduced velocity)

Emergency stop (if some danger is detected)

Keep a safety distance within a safety zone

Solution

Illustration

Solution Details Camera and distance sensors will be used to identify humans

Related Pattern

Name Collision Avoidance

Pattern Context UGVs are moving autonomously in areas where obstacles may occur dynamically and

in an unplanned / unforeseen way.

Problem Summary In case an obstacle is hit, the UGV or obstacle may be damaged seriously. Eventually,

the mission must be aborted.

Problem Details The mission may be interrupted or even aborted. Obstacles or the UGV could be

damaged in such a way that the mission is delayed or cannot be completed. Damaged

UGVs may be needed to taken out of the system / swarm. Damaged obstacles may

need to be discarded and replaced. These consequences may lead to delays, injuries

and increased costs.

Solution Summary Find mechanisms to detect obstacles early enough such that the UGV can react

accordingly.

Solution Illustration

Solution Details Reaction could be: slowing down, stopping, evade or even retreat. It recommended

to report such that an operator (system or human) can react and find a solution to

remove the obstacles. Alternatively, the strategy of the UGVs may be adapted by, e.g.,

updating the map and find new routes.

Related Pattern Obstacle Detection, Avoid Collisions with Objects, Avoid Collisions with Humans

References

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 26 of 31

Name Emergency Stop

Pattern Context While a UGV is in operation, unforeseen events may require an emergency stop of

operation for any reason.

Problem Summary In an unforeseen situation, the operator needs a fast and direct way to stop all

operations immediately.

Problem Details

Solution Summary Implement an emergency stop switch at the operator’s management system and on

the UGVs itself.

Solution Illustration It needs to be ensured that the emergency stop operation can be triggered at any

time, remotely or at the UGVs directly.

Solution Details According to the regulations (cf. ISO 1525-1997) at every UGV, there must be a

reachable red button, the same holds for dedicated spots in the area. Push buttons

in red are commonly used and labeled appropriately.

Related Pattern

References

Table 3: Emergency Stop Description

Name Continue Operations

Pattern Context After an emergency situation is resolved, operations need to go back to normal.

Ideally, the last state is resumed.

Problem Summary A trigger is needed to reuse the last stable state and continue from there.

Problem Details

Solution Summary Implement a remote trigger for operators to resume operations for all stopped

UGVs. A trigger on a single UGV can be appropriate, too.

Solution Illustration

Solution Details

Related Pattern

References

Table 4: Continue Operation Description

Name Go to Safety Mode / Safe Behavior

Pattern Context In case of uncertainty about the safety of current operations, e.g., caused by

unauthorized personnel or the operation during maintenance, the UGVs need to

continue operations if safety can be guaranteed.

Problem Summary The UGV does not necessarily have to stop operations but must be prepared to

perform an emergency stop for all movements.

Problem Details

Solution Summary Perform all operations in a slow way such that emergency stops are possible at all

times and moving parts cannot harm any human around. Force needs to be

decreased in such a way that contact to an obstacle causes immediate stop. This

includes 1) Evade / find new route 2) Keep distance

Solution Illustration

Solution Details

Related Pattern

References [1] safelog-project.eu

[2] Lasota, Song, Shah, A Survey of Methods for Safe Human-Robot Interaction

Table 5: Safe Behaviour Description

http://safelog-project.eu/
https://interactive.mit.edu/survey-methods-safe-human-robot-interaction

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 27 of 31

Table 6: Obstacle Detection Description

Name Obstacle Detection

Pattern Context UGVs need mechanisms for “Collision Avoidance”. Depending on the environment,

different approaches have special advantages or drawbacks that need to be

considered when implementing a solution.

Problem Summary Depending on the environment and kind of obstacles, different technological

solutions need to be considered.

Problem Details Environmental parameters o be considered are the following:

- Light conditions

- Line of sight

- Moving speed

- Translucence of the obstacle

- Distance to the obstacle

- Stationary vs. moving obstacle

- Labelling by 2D tags

- Labelling by RFID

- Labelling by NFC

Solution Summary For each parameter, dedicated sensor systems are most appropriate. Eventually,

combinations of approaches are necessary to meet different environmental

parameters.

Solution Illustration

Solution Details Parameter Technical Solutions Limitations

Light

Conditions

- IR camera vs

photo electric

- Too light / too

dark

- Too transparent

Distance - ultrasonic, sonar,

radar, photo-

electric, photo cell

- range < 80cm

- object colour,

environmental

light,

- object material

- object form

Stationary All appropriate (see above)

Moving - high measuring

frequency sensors

(all)

- Frequency of

movement <

frequency of

measuring

Related Pattern Object as Obstacles, Humans as Obstacles

References

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 28 of 31

6 Conclusions

This deliverable presents the status of the available CPS models at M35 of CPSwarm project. Even if the

presented models (CPSwarm library, CPS hardware and behavior aspects, communication, and human in the

loop) can, of course, still be improved but they have been already used inside both research and industrial case

studies at different level.

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 29 of 31

Annex A

Configure endpoint

endpoint = {
 name = "drone" # Possibly non-unique name for the local node
 deviceClass = "drone" # Discoverable device class
 type = "zyre" # Endpoint type
 parameters = { # Endpoint parameters, which for Zyre endpoints can be:
 # ifname = "eth0" # Network interface to bind to
 # port = 34000 # Port to use for UDP beacons
 }
}

Configure bridged services

services = {
 #
 # Outgoing events
 #
 # The bridge will subscribe to these topics and forward
 # received messages as events to the swarm.
 #
 # - message: fully qualified name of the underlying
 # ROS message type (must have a field named
 # header with message type swarmros/EventHeader)
 # - source: ROS topic to forward events from
 #
 outgoingEvents = (
 {
 message = "cpswarm_msgs/LocalTargetPositionEvent",
 source = "target_found"
 }
)

 #
 # Incoming events
 #
 # The bridge will listen to these events and republish
 # them under ROS topics.
 #
 # NOTE: Only one handler per event name can be added. If
 # desired, handlers with the same message type can
 # republish to the same topic.
 #
 # - suffix: will be published under events/<suffix>
 # - message: fully qualified name of the underlying
 # ROS message type (must have a field named
 # header with message type swarmros/EventHeader)
 # - name: discoverable event name
 #
 incomingEvents = (
 {
 suffix = "launch",
 message = "swarmros/SimpleEvent",
 name = "launch"
 }
)

 #

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 30 of 31

 # Published parameters
 #
 # The bridge will load the value of these parameters from
 # the ROS Parameter Server, then publish them both as
 # ROS topics and as remotely available key-value targets.
 #
 # NOTE: Both suffixes and parameter names must be unique. If
 # desired, two parameter publishers can reference the
 # same ROS parameter path. Parameters must have a valid
 # value before the bridge is started.
 #
 # - suffix: will be published under parameters/<suffix>
 # - message: fully qualified name of the underlying
 # ROS message type (can by any type)
 # - name: discoverable key-value path
 # - path: ROS parameter path
 # - rw: whether set requests are accepted
 #
 publishedParameters = (
 # {
 # suffix = "reportInterval",
 # message = "swarmros/UInt",
 # name = "reportInterval",
 # path = "example/reportInterval",
 # rw = true
 # }
)
}

Deliverable nr.

Deliverable Title

Version

D4.3

Final CPS modelling library

1.0 – 02/01/2020

Page 31 of 31

References

Acronyms

Acronym Explanation

ANN Artificial neural networks

API Application Programming Interface

CPS Cyber Physical System

FREVO FRamework for EVOlutionarydesign

GPS Global Positioning System

GUI Graphical User Interface

LTE Long Term Evolution

ROS Robot Operating System

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

UML Unified Modeling Language

UWB Ultra Wide Band

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

ZMQ ZeroMQ

