

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 731946.

D6.4 – FINAL CPS SYSTEM DESIGN OPTIMIZATION AND FITNESS FUNCTION DESIGN

GUIDELINES

Deliverable ID D6.4

Deliverable Title Final CPS System Design Optimization and Fitness Function

Design Guidelines

Work Package WP6

Dissemination Level PUBLIC

Version 2.0

Date 07-12-2019

Status Final

Lead Editor Davide Conzon (LINKS)

Main Contributors Midhat Jdeed (UNI-KLU), Arthur Pitman (UNI-KLU), Etienne

Brosse (SOFTEAM)

Published by the CPSwarm Consortium

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 2 of 24

Document history

Version Date Author(s) Description

0.1 29-04-2019
Davide Conzon

(LINKS)
Initial TOC

0.2 14-05-2019
Davide Conzon

(LINKS)
Integrated Fitness Function Design in CPSwarm and

Simulator API sections

0.3 01-06-2019
Davide Conzon

(LINKS)
Integrated UNI-KLU contributions

0.4 13-06-2019
Davide Conzon

(LINKS)
Integrated the fitness function example

0.5 30-06-2019
Davide Conzon

(LINKS)
Integrated SOFTEAM and UNIKLU contributions,

ready for internal review

1.0 08-07-2019
Davide Conzon

(LINKS)
Integrated the revisions from the reviewers

1.1 08-08-2019
Davide Conzon

(LINKS)
New version to be used to collect update

1.2 31-09-2019
Arthur Pitman (UNI-

KLU)
Described parameters optimization

1.3 31-10-2019
Etienne Brosse

(SOFTEAM)
Described fitness function design

1.4 02-12-2019
Davide Conzon

(LINKS)
Integrated the final contributions of the partners

1.5 03-12-2019
Davide Conzon

(LINKS)
Minor improvements

1.6 03-12-2019
Davide Conzon

(LINKS)
Final version ready for internal review

2.0 08-12-2019
Davide Conzon

(LINKS)
Integrated revisions from internal reviewers

Internal Review History

Review Date Reviewer Summary of Comments

05-07-2019 – v0.5 Renè Reiners (FIT) Approved with minor comments.

05-07-2019 – v.0.5 Etienne Brosse (SOFTEAM) Approved with minor comments.

04-12-2019 – v1.6 Renè Reiners (FIT) Approved with minor comments.

06-12-2019 – v1.6 Etienne Brosse (SOFTEAM) Approved with minor comments.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 3 of 24

Table of contents

Contents

Document history .. 2

Table of contents ... 3

1 Executive summary... 4

2 Introduction .. 5

2.1 Scope .. 5

2.2 Document organization ... 5

2.3 Related documents.. 5

3 CPS design optimization ... 6

3.1 Parameter Optimization .. 6

3.2 FREVO as an Optimization Tool ... 6

3.3 Integration of FREVO in the CPSwarm Workbench .. 7

3.3.1 Refactored Simulator API ... 8

3.3.2 Optimization workflow.. 10

3.3.3 Simulation workflow .. 12

3.3.4 Error recovery workflow ... 12

4 Fitness function design .. 16

4.1 Fitness function design guidelines .. 16

4.2 Fitness function design in CPSwarm workbench ... 17

4.2.1 Scenario Overview .. 18

4.2.2 Fitness function .. 19

4.2.3 Optimization Setup .. 19

5 Conclusion ... 21

6 References ... 22

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 4 of 24

1 Executive summary

Deliverable D6.4 - Final CPS System Design Optimization and Fitness function Design Guidelines updates the

concepts presented in D6.3 - Initial CPS System Design Optimization and Fitness function Design Guidelines

about the optimization of Cyber Physical Systems (CPSs) using heuristic search approaches and methods for

assessing their performance. Special emphasis is given to the development of fitness functions that guide the

optimization process. First, this deliverable presents the method used in CPSwarm to support the optimization

of swarm algorithms. Then, it outlines the best practices for designing fitness functions and describes how this

is done in the CPSwarm Workbench. Finally, a case study on the logistics scenario is introduced to examine the

effectiveness of the technique.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 5 of 24

2 Introduction

2.1 Scope

This deliverable considers the design of optimal swarms of CPSs and the corresponding fitness function used

in optimization process and how this can be accomplished using the CPSwarm Workbench. This deliverable

presents the interface between the components of the Simulation and Optimization environment, i.e., the

Simulation and Optimization Orchestrator (SOO), the Optimization Tool (OT) and the Simulation Managers

(SMs) that integrate the external simulators in the CPSwarm Workbench. The implementation of the SMs is

covered by the deliverables D6.5/D6.6/D6.7 - Initial/Updated/Final integration of external simulators.

2.2 Document organization

The rest of this deliverable is structured as follows: Section 3 recaps the concepts presented in D6.3 about CPS

design optimization and then presents the integration of the Optimization Tool (i.e., FRamework for

EVOlutionary design - FREVO) in the CPSwarm Workbench, describing the Application Programming Interfaces

(API) and the optimization workflow defined. In Section 4 the authors describe the final guidelines for fitness

function design and present their application in the CPSwarm Workbench. Finally, Section 5 concludes this

deliverable.

2.3 Related documents

ID Title Reference Version Date

D5.2 Initial CPSwarm Modelling Tool D5.2 1.0 30-09-2017

D6.1 Initial Simulation Environment D6.1 1.0 05-10-2017

D6.5 Initial Integration of External Simulators D6.5 1.0 30-06-2018

D3.2
Updated System Architecture & Design

Specification
D3.2 1.0 30-06-2018

D6.3
Final CPS System design optimization and Fitness

function design guidelines
D6.3 1.0 30-06-2018

D6.2 Final Simulation Environment D6.2 1.0 31-04-2019

D6.6 Updated Integration of External Simulators D6.6 1.0 31-04-2019

D6.7 Final Integration of External Simulators D6.7 1.0 31-12-2019

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 6 of 24

3 CPS design optimization

As documented in D6.3, the design of CPSs may lead to a tremendous increase in complexity. CPS development

remains a complex and error-prone task, often requiring a collection of separate tools, to follow a CPS design

cycle including modelling, simulation, optimization and deployment. Moreover, interactions amongst CPSs

might lead to new behaviours and emerging properties, often with unpredictable results. Rather than being an

unwanted byproduct, these interactions can become an advantage if explicitly managed since early design

stages. CPSwarm tackles this challenge by proposing a new science of system integration and tools to support

the engineering of CPS swarms. The purpose of CPSwarm tools is to ease development and integration of

complex herds of heterogeneous CPSs that collaborate based on local policies and that exhibit a collective

behaviour capable of solving complex, industry-driven, real-world problems.

The CPSwarm approach, using the Simulation and Optimization environment in the Workbench, allows the

performance of a swarm solution to be evaluated. This tool includes mainly three components: the Simulation

and Optimization Orchestrator (SOO) that coordinates all the simulation and optimization tasks; a set of SMs

that interfaces with heterogeneous Simulation Tools (STs) with common Application Programming Interfaces

(APIs); and an Optimization Tool, such as FREVO, to perform the optimization processes. This environment can

be used either to simulate the behaviour of a designed swarm solution in a ST using its Graphical User Interface

(GUI) to evaluate its behaviour or to optimize the controller algorithm/module using evolutionary design

methodologies.

3.1 Parameter Optimization

Within the design of swarm systems, optimization may take many forms ranging from the creation of complete

controllers implemented using neural networks to the fine-tuning of algorithms. In the CPSwarm project, the

partners focus on parameter optimization which can adjust the behaviour of any algorithm by modifying its

parameters. Compared with the development of controllers based on neural networks explored in D6.3 - Initial

CPS System Design Optimization and Fitness function Design Guidelines, parameter optimization requires fewer

computationally expensive simulation runs. Combined with effective visualization and easy deployment to real

hardware, the authors have considered that this approach can deliver tangible results to experts designing

CPSs.

At first glance, designers could search the entire search space by examining every possible combination of

parameters, however this is almost always too computationally expensive. More commonly, in an informed

optimization task, a heuristic is used to guide the optimization process towards the optimal solution. However,

in multi robot or swarm systems operating in diverse environments, such heuristics may be hard or even

impossible to design. Evolutionary computation, based on the principles of selection, mutation and cross-over,

takes a slightly different approach, manipulating parameters according to their performance measured by a

“fitness” function. In many instances this approach can produce satisfactory if not optimal solutions without

intimate knowledge of the behaviour itself.

3.2 FREVO as an Optimization Tool

In the initial CPSwarm system design optimization, presented in D6.3, FREVO has been introduced as an

optimization tool. The first key element of the optimization process is the choice of representation that

describes the structure of a possible solution. Secondly, operators that modify, i.e., mutate or cross-over, the

representations must be defined. Thirdly, an optimization method must be specified to manage the selection

of representations. Currently FREVO provides an implementation of the NNGA method [1]. It begins by creating

𝑛𝑝𝑜𝑝 candidate solutions. In each of the 𝑛𝑔𝑒𝑛 generations, the solutions are evaluated and ranked according to

their performance. Successful solutions, i.e., those with high fitness values, are carried to the next generation

as elite, or are crossed or mutated to produce new controllers. In addition, a small proportion of entirely new

random candidates is introduced with the intention of maintaining diversity in the population.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 7 of 24

Within the CPSwarm project, FREVO delegates the problem specification to the simulation run by the SMs and

relies instead on the fitness values calculated at the end of each simulation to guide the optimization. FREVO-

XMPP was developed as a wrapper supporting XMPP communication to transfer candidate solutions to SMs

and await fitness values. By integrating a work queue, FREVO is able to efficiently balance loads overs a large

set of SMs and robustly handle failures that may occur during simulation.

3.3 Integration of FREVO in the CPSwarm Workbench

Figure 1 - CPSwarm reference architecture.

The OT and the external simulators are integrated in the CPSwarm Workbench architecture (Figure 1), using a

broker-based distributed approach, designed in Tasks 6.1 and 6.2. Deliverable D6.2 – Final Simulation

Environment has introduced the final version of the Simulation and Optimization Environment architecture.

This deliverable will only briefly describe the final version of the architecture, instead it provides a full

description of the new APIs for the interaction between the OT and the simulation components, designed to

enhance the scalability and reliability of the solution compared to the ones presented in D6.2.

During the CPSwarm project, two different versions of the Simulation and Optimization Environment

architecture have been designed: the initial one, described in D6.1 – Initial Simulation Environment, which,

subjected to a performance analysis, offered limited performances due to an inefficient discovery mechanism

and the large number of messages required between the OT and the simulators during optimization process.

These issues have been addressed in the final version of the architecture first introduced in D6.5 Initial

Integration of External Simulators and in [2] and fully described in D6.2, where also some new features that aim

to enhance the scalability and the rapid deployment of the solution were also introduced.

As already stated, the architecture is composed of three components: the SOO, which coordinates all the

operations of simulation and optimization, the OT, which is the component responsible for developing

candidates solutions as explained in Section 3.2 and finally a set of Simulation Tools, e.g., Stage1 and Gazebo2

based on the Robot Operating System (ROS) distributed on several machines – namely Simulation Servers (SSs)

- each one wrapped by a SM, allowing interaction via a standard interface. D6.2 has also introduced a set of

features to improve the deployment and the scalability of the architecture, applying two new technologies: the

software components of the Simulation and Optimization Environment have been refactored to run in one

1 https://github.com/rtv/Stage
2 http://gazebosim.org

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 8 of 24

container environment (e.g. Docker3). This allows several instances of ST to be run on each SS. Furthermore,

the containerized components can be deployed and orchestrated dynamically using a rapid deployment and

orchestration tool (e.g., Kubernetes4), which has been integrated in the SOO, allowing the user to simply set up

the required set of STs to execute the desired simulation and optimization tasks.

A prototype of this architecture has been already produced using Docker, Kubernetes and the eXtensible

Messaging and Presence Protocol (XMPP) and all its native security features [3] for the communication among

the components (please refer to D6.2 for its description).

The next subsection will introduce the new Simulator API defined after a series tests done on the final

Simulation and Optimization Environment architecture, using the prototype presented in D6.2. The main goal

of this refactoring is to improve the reliability and scalability of the system. The API are introduced in this

deliverable, presenting the relative optimization and simulation workflow. Their implementation is out of scope

of this deliverable and will be presented in D6.7 - Final Integration of external Simulators due at M36.

3.3.1 Refactored Simulator API

Compared to the ones described in D6.2, these APIs have three main objectives:

 Remove redundant fields: the description field has been removed as it was it unused.

 Reduce the variety of messages: OptimizationStarted, OptimizationCancelled and

OptimizationProgress have been merged into the OptimizationStatus message.

 Define a way to restore an optimization process if something goes wrong during an optimization

process.

Table 1 will present the messages defined for these APIs. The following details are provided for each API:

 Description of the API.

 Components using this API.

 Type of communication used (i.e., file transfer, text message).

 Data included.

Table 1 - Refactored Simulator API

API Description
Components

involved

Type of

communicatio

n

Data included

SimulatorConfiguration
Used to configure
the selected STs.

Sent by the SOO to
all the selected
SMs.

File transfer.

ZIP file including:

 CPS models.

 Environment models.

 Other configurations (must
include a SCID to be used by
selected SMs to set as new
presence status according to the
following workflow explaination).

SimulatorConfigured

Replies to the
configuration files
sent from the SOO,
indicating if the ST
has been

Sent by a SM to the
SOO. Text message.

Fields:

 OID: The IDentifier (ID) of the
optimization process.

 Type: The type of the message
(fixed value:
SimulatorConfigured).

 Success: Boolean value.

3 ttps://www.docker.com/
4 https://kubernetes.io/it/

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 9 of 24

successfully
configured or not.

StartOptimization
Used to start an
optimization task.

Sent by the SOO to
the OT. Text message.

Fields:

 OID: a unique ID assigned by the
SOO that allows the optimization
process to be tracked. Typically,
it contains a refence to the
corresponding simulation
environment as well as the
package to be optimized, for
example cpswarm_sar.

 Type: The type of the message
(fixed value: StartOptimization).

 Configuration: a JSON string
containing the configuration of
the OT.

 SCID: a simulation configuration
ID, which informs the OT, which
SMs can participate in the
optimization process. The OT
monitors SM presence
information and will run
simulations on any SM
configured for this SCID. This
allows the SOO to configure and
start SMs during an optimization
according to available resources
and the desired system
performance.

GetOptimizationStatus

Used to get the
status of a running
optimization,
specified by OID.

Sent by the SOO to
the OT. Text message.

Fields:

 OID: the ID of the optimization
process to enquire about.

 Type: The type of the message
(fixed value:
GetOptimizationStatus)

GetOptimizationState

Used to ask a dump
of the state of a
running optimization,
specified by OID,
including
configuration and list
of candidates of the
current generation.
This state will be
used to restart an
optimization in case
of errors.

Sent by the SOO to
the OT.

Text message.

Fields:

 OID: the ID of the optimization
process to enquire about.

 Type: The type of the message
(fixed value:
GetOptimizationState).

OptimizationState

Used to send a
dump of the state of
the current
optimization, to be
used to restart it in
case of errors.

Sent by the OT to
the SOO, replying
to
GetOptimizationStat
e and by the SOO
to the OT when an
optimization
process needs to
be restarted

File transfer.

Zip file including:

 The configuration of the OT.

 The list of candidates of the
current generation.

OptimizationToolConfigur
ed

Replies to the
configuration files in
OptimizationState
sent from the SOO,
indicating if the OT
has been
successfully
configured or not
before restarting the

Sent by OT to the
SOO.

Text message.

Fields:

 OID: The IDentifier (ID) of the
optimization process.

 Type: The type of the message
(fixed value:
OptimizationToolConfigured).

 Success: Boolean value

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 10 of 24

previous
optimization.

CancelOptimization
Used to cancel a
running optimization,
specified by OID

Sent by the SOO to
the OT. Text message.

Fields:

 OID: the ID of the optimization
process to cancel.

 Type: The type of the message
(fixed value:
CancelOptimization).

OptimizationStatus

Used to reply to the
StartOptimization,
GetOptimizationStat
us and
CancelOptimization
messages.

Sent by OT to SOO. Text message.

Fields:

 OID: the ID of the optimization
process.

 Type: The type of the message
(fixed value:
OptimizationStatus).

 Status: The status of the
optimization process:

o ErrorBadConfiguratio
n: Optimization
couldn’t be started
due to bad
configuration.

o Running:
Optimization is
running

o ErrorOptimizationFail
ed: Optimization
stopped due to an
unknown error.

o Stopped:
Optimization stopped
by request from SOO

o Complete:
Optimization
completed
successfully

 Progress: Progress of the
optimization process in.

 BestFitnessValue: The current
fitness value.

 BestController: The current best
controller found in optimization.

RunSimulation

Instructs the SM to
run a simulation
using the specified
controller. It can be
sent by the OT
during optimization
or by the SOO to
request a simple
simulation.

Sent by the SOO or
by the OT to the
SM.

Text message.

Fields:

 OID: the ID of the optimization
process starting the simulation.

 Type: The type of the message
(fixed value: RunSimulation).

 SID: ID of the simulation,
assigned by the OT.

SimulationResult

Returns the result of
a simulation
performed for
optimization.

Sent by a SM to the
OT during
optimization.

Text message.

Fields:

 OID: The ID of the
optimizationprocess.

 Type: The type of the message
(fixed value: SimulationResult).

 SID: ID of the single simulation.

 FitnessValue: The fitness of the
controller, calculated by the
fitness function.

 Success: Boolean value.

3.3.2 Optimization workflow

The SOO can perform an optimization using the OT, where each controller candidate is simulated in a SS, as

shown in Figure 2.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 11 of 24

Figure 2 - Optimization workflow

Figure 2 shows the messages’ flow among the SOO, the OT, and two exemplary SMs, during an optimization

process. In the initialization phase, all components announce their availability by broadcasting presence

information. The SOO and the OT collect this information to create a list of available SMs and their capabilities

to be used, indeed the list is needed both by the SOO and the OT, because they need to select the SMs to use.

Similarly, the OT's presence informs the SOO that it is ready to perform optimization tasks. When the user

starts the optimization, the SOO evaluates the available SMs, selecting the ones that fulfil the requirements.

Then, it transmits configuration files, to them, to setup the simulation (including, the CPS and environment

models received by the modelling tool, the maximum number of simulation steps to be performed, etc.). The

SOO assigns to all the configured SMs a unique Simulation Configuration IDentifier (SCID) that they set as

status in their presences. Once all the SMs have confirmed to have been configured with a

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 12 of 24

SimulatorConfigured message, the SOO sends a StartOptimization message to the OT with the SCID to be

used, which replies with an OptimizationStatus message including a unique Optimization IDentifier (OID),

valid for the whole optimization process. The OT selects all the SMs that has sent a presence with the SCID

indicated by the SOO, to be used for the optimization and, then, it begins the optimization, sending a sequence

of RunSimulation messages to SMs, including the candidate controller to be evaluated. The SMs use the

corresponding STs to evaluate the controllers and after having calculated the fitness score of the candidate,

they send it to the OT, through a SimulationResult message. Throughout the optimization process, the SOO

may request the progress of the optimization process intermittently or even cancel it by sending the OT a

GetOptimizationStatus or CancelOptimization message respectively, receiving in response an

OptimizationStatus message indicating the status of the optimization. Furthermore, periodically, the SOO

sends to the OT a GetOptimizationState message to ask a backup of the current optimization state, when the

OT receives this message, it sends back to the SOO a file containing the current configuration and the list of

the candidates of the current generation, which can be used to restart the optimization (see Section 0 for

details), Once the optimization process completed, the OT sends a final OptimizationStatus message to the

SOO, which includes the optimized candidate.

3.3.3 Simulation workflow

The SOO can also be used to send a specific controller candidate to a SM, for more in depth analysis. In this

case, the OT is not involved, the SOO and SM communicate directly (see Figure 3) and the behaviour is the

same indicated in the deliverable D6.2. This allows a controller optimized by the OT to be evaluated more

thoroughly, e.g., through visual replay using the ST Graphical User Interface (for visual replay, the selected ST

must run on a machine directly accessible for the user, so that he/she can see the ST’s GUI. In this scenario, the

SOO uses the collected presences to select one SM among the ones suitable for that simulation. Then, the SOO

sends to it, the required files and, after having received the SimulatorConfigured message, then sends to it,

the candidate controller to be replayed.

Figure 3 - The messaging sequence when simulating a specific CPS controller.

3.3.4 Error recovery workflow

The introduction of this new version of the API has allowed to introduce a set of new features relative to the

reliability of the system and error recovery. This is important because the optimization process, also with the

use of the distributed architecture introduced by CPSwarm is a long process and the ability to recover to errors

without the need to restart from the beginning is important.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 13 of 24

For this reason, the partners have defined API to recover from possible failures in all the components of the

system. These APIs are detailed in the following subsections.

3.3.4.1 SOO error recovery

If during an optimization the SOO fails or goes offline, the OT is informed in real-time through the presences.

The optimization process is not stopped, because the OT communicates directly with the SMs, but if, when the

process finishes the SOO is still offline, the OT instead to the send immediately the OptimizationStatus

message to the SOO, it stores the result internally and sends it only when the SOO is back online.

3.3.4.2 OT error recovery

To address the possibility that the OT fails or goes offline during an optimization process, the partners have

defined a mechanism to save and restore the optimization state. As shown in Figure 4 and outlined before, the

SOO periodically sends the GetOptimizationState (identified by its OID) to the OT and store it locally. When

the SOO receives a presence that indicate that the OT has failed, the SOO waits until the OT is back online.

Then, it sends a GetOptimizationStatus, if the status indicates that the optimization is still ongoing (i.e., if

there has been only a loss of connection between the SOO and the OT) the SOO continues to wait the

conclusion of the process; instead, if the status indicates that the optimization is not ongoing, the SOO sends

back to the OT the last dump file that it has received using the file transfer and when the OT sends back a

OptimizationToolConfigured it send a new StartOptimization to the OT. In this way, the OT can start from

the status previously reached (the last generation of candidate created) and not completely from scratch,

largely reducing the time required to complete an optimization process, if some problem occurs.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 14 of 24

Figure 4 - OT error recovery

3.3.4.3 SM error recovery

If one SM fails or goes offline during the optimization process and it is one of those used by the OT, when the

relative offline presence is received, the OT can automatically stop to use it until the SM goes online again.

To handle better this type of situation, the OT implements also a mechanism that allow the OT to add, during

the optimization process, new SMs to the list of the ones to be used, just when they go online. This feature can

be used to replace another SM that has failed, but also to scale on ongoing optimization, without stopping the

process.

The entire flow is shown in Figure 5.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 15 of 24

Figure 5 - SM error recovery

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 16 of 24

4 Fitness function design

According to the initial CPS system design optimization and fitness function design guidelines, presented in

D6.3, a fitness function represents the desired behaviour of a swarm of CPSs. The best performance of the

design optimization can be achieved by maximizing that fitness function. Such a function is evaluating the

closest solution for the optimum on for a problem. While various names are used in the literature, such as

fitness function, cost function or utility function, the function seeks to guide the optimization process towards

a satisfactory if not optimal solution. While the function itself is highly problem-specific and thus there are no

straightforward rules for its design, many studies in the field of evolutionary optimization have considered

generic methods for fitness function design. In general, these methods may be categorized into a three-

dimensional fitness space [4] [5]:

1. Functional vs. behavioural: A functional fitness is based on components that directly measure the way

in which the system functions. A behavioural one rewards the system for displaying a given behaviour.

2. Global vs. local: Global fitness rewards the system based on information that is available to an

external observer, while the local one is restricted to information available to a single component.

3. Explicit vs. implicit: An explicit function rewards the way in which a certain goal is achieved), while

implicit fitness is focused on how much the goal is reached (e.g. a distance). Implicit functions are also

extensively used in search algorithms operating in the behavioural space.

4.1 Fitness function design guidelines

As the fitness function design is completely related to each problem individually, as documented in D6.3, In

the scope of the CPSwarm Workbench, the authors have mainly identified the main guidelines for a user for

defining working fitness functions:

Defining scope and modelling sub-problems for complex goals: As mentioned above, the fitness function

for a problem is directly related to the specifications for that problem. Nevertheless, a good start for designing

an effective fitness function is to define the specifications for a give problem. Moreover, if an objective proves

to be too difficult for a system, it might help to decompose it into simpler sub-objectives with lower utility

values, for example, to evolve robots playing soccer it is good to reward players for kicking the ball since it

directly correlates to the number of goals and consequently to the fitness of the solution [5].

Topology of fitness landscape: In general, adversary fitness functions [6], fitness function with a large

stochastic component (noise) and fitness functions with local cost minima can affect the optimization time and

quality of optimization outcome. While the fitness is initially derived by the problem description, a refinement

of the fitness function towards a "smooth topology" can significantly improve the result. Furthermore, the

search space can be reduced by assigning high penalties towards unwanted behaviours (an example is a robot

car that should go forward and orient itself, in this case, going backward could be excluded as behaviour).

However, keep in mind that excluding certain behaviours accidently might cut off solutions which are not

obvious but have superior performance in the end.

Combined fitness functions: In many cases, the fitness function comprises orthogonal goals, for example, a

robot swarm could have assigned a fitness to stay together, while having a second goal to move forward as a

swarm. Typically, these goals can be easily expressed as separate fitness functions but not easily into a single

combined one. Some optimization algorithms can perform a multi-dimensional search which yields results in

form of a set of non-dominated solutions. After all, this requires a selection based on a combined fitness in

before deployment, furthermore not all optimization algorithms in CPSwarm support this approach. Therefore,

fitness functions are often described as a weighted sum of criteria, which shifts the problem of defining proper

weights. While this ultimately depends on initial requirements, a quick guideline can be to normalize criteria

based on their measured variance to get a set of equally matched criteria.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 17 of 24

Computational effort to derive the fitness value: In some cases, where the fitness function is derived from

a simulation of the target system, the computational effort for computing the fitness function can become the

defining part of the overall evolutionary algorithm. In some cases, typically early in the optimization process, a

simpler fitness calculation which is considerably faster could significantly speed up the process. For the example

where a fitness function is derived by a simulation this could be done with fewer repetitions of simulations (e.g.

averaging the results of a few simulations in the beginning and increasing this amount at later generations,

where accuracy is needed), shorter simulation time (adjusting simulated time depending on generations) or

reduced accuracy (simulating with larger time steps/lower resolution in early generations).

CPSwarm Workbench aims to ease the problem-specific aspects of designing a fitness function as much as

possible, as detailed in the following subsection.

4.2 Fitness function design in CPSwarm workbench

The CPSwarm Consorium has developed a tool integrated in the Modelling Tool, named Fitness Function

Design Tool, which allows to design a fitness function starting from its mathematical model. This subsection

will present the approach followed for the design of the fitness function and then its integration in the

Simulation and Optimization Environment, then the next will present a concrete example based on the

CPSwarm logistic scenario.

In the CPSwarm Workbench, more specifically the modelling phase, the Workbench allows to design the fitness

function to be associated with a behavior, to optimize parameters and simulation settings after that the same

Modelling Tool (i.e. Modelio5) has been used to define the state machine to address the problem. The

difference between parameters and simulation settings is that parameters are used by the algorithms to change

the behavior of the CPS, instead simulation settings are used to setup the simulation (see Section 4.2.3 for

concrete examples). Furthermore, as shown in the SAR scenario, presented in D6.3, using the state machine

approach, the complex scenario can be subdivided in several more simplex states (e.g., the logistics scenario

can be subdivided in several states) and then the fitness function can be designed for every state (e.g. only

optimizing the parameters for the coverage of the warehouse).

The Modelling Tool allows to describe the fitness function using mathematical expressions. When the fitness

function has been modelled, the Modelling Tool uses this model to generate the code that will then be used

in the rest of the Workbench.

The model of the fitness function is stored also in the modelling library, to be reusable in different contexts.

Furthermore, the library is pre-loaded with a set of default fitness functions associated with the behaviours

designed for the proposed scenarios. For example, regarding the SAR scenario, the library could be preloaded,

with default fitness functions, for all the possible states.

Based on the model designed, the Mdelling Tool is able to generate a python script, which takes the inputs

from the ROS bags6 (log files where during the simulation the messages, published on ROS topics are stored)

and calculate the fitness score printing the result on the standard output. This script is executed by the SM

each time a simulation is finished during an optimization process and then the value calculated is sent to OT.

Finally, the Modelling Tool allows to the user to select the parameters and simulation settings that he wants to

optimize. The list of the parameters and simulation settings are passed to SOO with the ranges to be used for

each of them. The SOO instructs the OT to start the optimization on these parameters. After the results are

ranked by the OT, the Simulation and Optimization Environment returns the configuration file with the

optimized parameters to be deployed on the CPS to optimize the behaviour.

5 https://www.modelio.org/
6 http://wiki.ros.org/Bags

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 18 of 24

After the introduction of the general approach, the next subsections will introduce a concrete example of how

this approach is applied to the logistics scenario.

4.2.1 Scenario Overview

To illustrate the CPSwarm approach, the authors introduce the following scenario taken from the logistics

domain. The logistics use case envisages a scenario where two classes of robots, scouts and workers, assist in

moving boxes in a warehouse. The scout robots, equipped with a QR-code reading camera, rove around the

warehouse space searching for boxes. Once a box is located, the scout notifies all workers robots of its location.

Idle worker robots bid for the job of transporting the box to a specified location based on their current location,

i.e. the distance to the box, and their remaining battery level. The selected workers move to the box,

autonomously navigating around obstacles, lifts it using its elevator mechanism, moves to the destination, sets

the box down and returns to an idle state. The entire scenario in its final version is described in “D8.4 – Final

Swarm Logistics Demonstration” (M36). The simulation of this scenario is shown in Figure 6.

For simplicity, each scout robot follows a random walk behavior: it picks a random direction and “walks” until

it encounters a box, the edge of the operating space or a distance threshold has been exceeded. It then picks

a new random direction and continues walking as before. As the distance parameter affects the effectiveness

of the Scout coverage of operating space, it may be optimized for the specifics of the scenario. In addition, the

number of scout and worker robots may be varied to affect the overall performance of the system.

Figure 6 - Logistics scenario simulation

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 19 of 24

4.2.2 Fitness function

The overall effectiveness of the system may be judged by its productivity, i.e. average time taken to transport

all boxes to the goal area. This effectiveness of the system is expressed by a fitness function as described in

the following equations.

 Simulation time: 𝑡𝑠𝑖𝑚.

 Total number of boxes to deliver: 𝑛𝑏.

 Delivery time of a given box to the goal area:

𝑇 = {𝑡𝑖|𝑖 ∈ [0, 𝑛𝑏)}
𝑡𝑖 ∈ [0, 𝑡𝑠𝑖𝑚]

 Average time of box delivery:

𝑡𝑎𝑣𝑔 =
∑ 𝑇𝑥

𝑛𝑏
𝑥=1

𝑛𝑏

 Fitness function is the percentage of average time delivery.

𝐶 =
𝑡𝑠𝑖𝑚 − min (𝑡𝑎𝑣𝑔, 𝑡𝑠𝑖𝑚)

𝑡𝑠𝑖𝑚
∗ 100

These equations have modelled using SysML parametric diagram, as shown in Figure 7.

Figure 7 – Fitness function under the Modelling Tool

The model designed is then exported in the python script (see ANNEX A). The script before reads the ROS bags

to collect the info about the box moved by the robot, then the script calculates the fitness score as the average

time required to move the boxes. This script is passed to the Simulation and Optimization Environment where

it is used to calculate the fitness score to be associated to each combination of parameters set in the simulation.

The parameters and simulation settings are set using the Modelling Tool as indicated in the next subsection.

4.2.3 Optimization Setup

As mentioned in Section 4.2.1, three different values may be modified during optimization: one is a parameter

of the behaviour, namely the walk length; other two are simulation settings, i.e. the scout count and the worker

count. Each parameter is tagged, in the modelling tool, as ‘optimizable’. By tagging a model element as

optimisable, the user must specify a value range (with a minimal and a maximal values) and a step size as

shown in Figure 8.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 20 of 24

Figure 8 - Optimisable Parameter under the Modelling Tool

Table 2 summarizes the specified of these.

Table 2 - System parameters to be optimized

Parameter name Minimum value Maximum value Step size Notes

Walk_length 200 1000 50
Random walk length

in centimetres

Scout_count 1 10 1
Number of scout

robots

Worker_count 1 10 1
Number of worker

robots

These values are exported by the Modelling Tool and passed to SOO and from SOO to the OT. The OT will

optimize these parameters and simulations settings, producing as a result the combination of values that gives

the best fitness score. In this example provided in this deliverable, the one that gives the less average time to

move the boxes.

Finished the optimization, the configuration file for the algorithm containing the optimized values for the

parameters indicated in the Modelling Tool is produced by the SOO and then can be deployed using the on

the CPS using the Deployment Tool. Furthermore, all the fitness scores obtained associated to the values set

for the parameters and simulation settings to obtain them, can be checked by the user in a dashboard. In the

example given, this can be useful for the user to select how many scout and worker robots to deploy in the

warehouse.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 21 of 24

5 Conclusion

This deliverable has described the way in which the CPSwarm Workbench supports a swarm of CPSs design

optimization using an evolutionary approach and the final guidelines for designing a fitness function to create

the desired behaviour of a swarm of CPSs. The document introduces the API and the optimization workflow

defined for the CPSwarm solution. Then, the authors present the final fitness function design guidelines and

detail how they have been applied in the CPSwarm Workbench through the introduction of the Fitness Function

Design tool.

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 22 of 24

6 References

[1] L. C. J. a. R. P. J. A. J. F. Van Rooij, «Neural Network Training Using Genetic Algorithms,» in

World Scientific Publishing Co.,, Mar. 1997.

[2] D. C. M. J. M. S. E. F. W. E. Micha Rappaport, «Distributed Simulation for Evolutionary Design

of Swarms of Cyber-Physical Systems,» in ADAPTIVE 2018, 2018.

[3] D. T. B. P. B. A. L. R. T. a. M. A. S. Conzon, «The VIRTUS Middleware: An XMPP Based

Architecture for Secure IoT Communications,» in 21st International Conference on Computer

Communications and Networks (ICCCN), 2012.

[4] D. a. J. U. Floreano, «Evolutionary robots with on-line self-organization and behavioral

fitness.,» Neural Networks, vol. 13, n. 4-5, pp. 431-443, 2000.

[5] F. I., On Evolving Self-organizing Technical System, PhD thesis, Alpen-Adria-Universität

Klagenfurt, 2013.

[6] A. J. Lockett, «Insights From Adversarial Fitness Functions.,» in Proceedings of the 2015 ACM

Conference on Foundations of Genetic Algorithms XIII (FOGA '15). ACM,, New York, NY,

USA, 2015.

Acronyms

Acronym Explanation

ANN Artificial Neural Network

API Application Programming Interfaces

CPSs Cyber-Physical Systems

FREVO FRamework for EVOlutionary design

GUI Graphical User Interface

ID IDentifier

NNGA Neural Network Genetic Algorithm

OID Optimization IDentifier

OT Optimization Tool

ROS Robot Operating System

SAR Search and Rescue

SCID Simulation Configuration IDentifier

SM Simulation Manager

SOO Simulation and Optimization Orchestrator

SS Simulation Server

ST Simulation Tool

XMPP eXtensible Messaging and Presence Protocol

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 23 of 24

List of figures

Figure 1 - CPSwarm reference architecture. ... 7

Figure 2 - Optimization workflow ... 11

Figure 3 - The messaging sequence when simulating a specific CPS controller. ... 12

Figure 4 - OT error recovery .. 14

Figure 5 - SM error recovery ... 15

Figure 6 - Logistics scenario simulation ... 18

Figure 7 – Fitness function under the Modelling Tool ... 19

Figure 8 - Optimisable Parameter under the Modelling Tool .. 20

List of tables

Table 1 - Refactored Simulator API .. 8

Table 2 - System parameters to be optimized .. 20

Deliverable nr.

Deliverable Title

Version

D6.4

Final CPS System design optimization and fitness function design guidelines

2.0 - 07/12/2019

Page 24 of 24

ANNNEX A

import rosbag, sys

def fitness():

 if (len(sys. argv) != 3):

 print " Logistics fitness function calculator Usage:\n fitness.py [bagfile.bag] [maximum simulation time]\n "

 sys.exit(1)

 bag = rosbag.Bag(sys.argv[1])

 max_time = float(sys.argv[2])

 start_time = float(bag.get_start_time())

 time_sum = TimeSum ("target_done", start_time, bag)

 box_count = BoxCount("target_done", bag)

 average_clipped = Average_cliped(time_sum, box_count, max_time)

 fitness = Percentage(max_time , average_clipped)

 print fitness

def Average_cliped(p1, p2, p3):

 return min (p1 / p2, p3)

def Percentage (p1, p2):

 return (p1 - p2) / p1 *100

def BoxCount(event, bag):

 result = 0

 for subtopic, msg, t in bag.read_messages(event):

 result += 1

 return result

def TimeSum(event, time, bag):

 result = 0

 for subtopic, msg, t in bag.read_messages(event):

 timeMsg = TimeMsg(msg)

 result += timeMsg - time

 return result

def TimeMsg(p1) :

 return float(p1.header.stamp.secs)

fitness()

