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1 Executive summary 

Deliverable D6.4 - Final CPS System Design Optimization and Fitness function Design Guidelines updates the 

concepts presented in D6.3 - Initial CPS System Design Optimization and Fitness function Design Guidelines 

about the optimization of Cyber Physical Systems (CPSs) using heuristic search approaches and methods for 

assessing their performance. Special emphasis is given to the development of fitness functions that guide the 

optimization process. First, this deliverable presents the method used in CPSwarm to support the optimization 

of swarm algorithms. Then, it outlines the best practices for designing fitness functions and describes how this 

is done in the CPSwarm Workbench. Finally, a case study on the logistics scenario is introduced to examine the 

effectiveness of the technique. 

 
 
  



 

Deliverable nr. 

Deliverable Title 

Version 

D6.4 

Final CPS System design optimization and fitness function design guidelines 

2.0 - 07/12/2019 

Page 5 of 24 

 

2 Introduction 

2.1 Scope 

This deliverable considers the design of optimal swarms of CPSs and the corresponding fitness function used 

in optimization process and how this can be accomplished using the CPSwarm Workbench. This deliverable 

presents the interface between the components of the Simulation and Optimization environment, i.e., the 

Simulation and Optimization Orchestrator (SOO), the Optimization Tool (OT) and the Simulation Managers 

(SMs) that integrate the external simulators in the CPSwarm Workbench. The implementation of the SMs is 

covered by the deliverables D6.5/D6.6/D6.7 - Initial/Updated/Final integration of external simulators. 

2.2 Document organization 

The rest of this deliverable is structured as follows: Section 3 recaps the concepts presented in D6.3 about CPS 

design optimization and then presents the integration of the Optimization Tool (i.e., FRamework for 

EVOlutionary design - FREVO) in the CPSwarm Workbench, describing the Application Programming Interfaces 

(API) and the optimization workflow defined. In Section 4 the authors describe the final guidelines for fitness 

function design and present their application in the CPSwarm Workbench. Finally, Section 5 concludes this 

deliverable. 

2.3 Related documents 

ID Title Reference Version Date 

D5.2 Initial CPSwarm Modelling Tool D5.2 1.0 30-09-2017 

D6.1 Initial Simulation Environment D6.1 1.0 05-10-2017 

D6.5 Initial Integration of External Simulators D6.5 1.0 30-06-2018 

D3.2 
Updated System Architecture & Design 

Specification 
D3.2 1.0 30-06-2018 

D6.3 
Final CPS System design optimization and Fitness 

function design guidelines 
D6.3 1.0 30-06-2018 

D6.2 Final Simulation Environment D6.2 1.0 31-04-2019 

D6.6 Updated Integration of External Simulators D6.6 1.0 31-04-2019 

D6.7 Final Integration of External Simulators D6.7 1.0 31-12-2019 
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3 CPS design optimization 

As documented in D6.3, the design of CPSs may lead to a tremendous increase in complexity. CPS development 

remains a complex and error-prone task, often requiring a collection of separate tools, to follow a CPS design 

cycle including modelling, simulation, optimization and deployment. Moreover, interactions amongst CPSs 

might lead to new behaviours and emerging properties, often with unpredictable results. Rather than being an 

unwanted byproduct, these interactions can become an advantage if explicitly managed since early design 

stages. CPSwarm tackles this challenge by proposing a new science of system integration and tools to support 

the engineering of CPS swarms. The purpose of CPSwarm tools is to ease development and integration of 

complex herds of heterogeneous CPSs that collaborate based on local policies and that exhibit a collective 

behaviour capable of solving complex, industry-driven, real-world problems.  

The CPSwarm approach, using the Simulation and Optimization environment in the Workbench, allows the 

performance of a swarm solution to be evaluated. This tool includes mainly three components: the Simulation 

and Optimization Orchestrator (SOO) that coordinates all the simulation and optimization tasks; a set of SMs 

that interfaces with heterogeneous Simulation Tools (STs) with common Application Programming Interfaces 

(APIs); and an Optimization Tool, such as FREVO, to perform the optimization processes. This environment can 

be used either to simulate the behaviour of a designed swarm solution in a ST using its Graphical User Interface 

(GUI) to evaluate its behaviour or to optimize the controller algorithm/module using evolutionary design 

methodologies. 

3.1 Parameter Optimization 

Within the design of swarm systems, optimization may take many forms ranging from the creation of complete 

controllers implemented using neural networks to the fine-tuning of algorithms. In the CPSwarm project, the 

partners focus on parameter optimization which can adjust the behaviour of any algorithm by modifying its 

parameters. Compared with the development of controllers based on neural networks explored in D6.3 - Initial 

CPS System Design Optimization and Fitness function Design Guidelines, parameter optimization requires fewer 

computationally expensive simulation runs. Combined with effective visualization and easy deployment to real 

hardware, the authors have considered that this approach can deliver tangible results to experts designing 

CPSs. 

 

At first glance, designers could search the entire search space by examining every possible combination of 

parameters, however this is almost always too computationally expensive. More commonly, in an informed 

optimization task, a heuristic is used to guide the optimization process towards the optimal solution. However, 

in multi robot or swarm systems operating in diverse environments, such heuristics may be hard or even 

impossible to design. Evolutionary computation, based on the principles of selection, mutation and cross-over, 

takes a slightly different approach, manipulating parameters according to their performance measured by a 

“fitness” function. In many instances this approach can produce satisfactory if not optimal solutions without 

intimate knowledge of the behaviour itself. 

 

3.2 FREVO as an Optimization Tool 

In the initial CPSwarm system design optimization, presented in D6.3, FREVO has been introduced as an 

optimization tool. The first key element of the optimization process is the choice of representation that 

describes the structure of a possible solution. Secondly, operators that modify, i.e., mutate or cross-over, the 

representations must be defined. Thirdly, an optimization method must be specified to manage the selection 

of representations. Currently FREVO provides an implementation of the NNGA method [1]. It begins by creating 

𝑛𝑝𝑜𝑝 candidate solutions. In each of the 𝑛𝑔𝑒𝑛 generations, the solutions are evaluated and ranked according to 

their performance. Successful solutions, i.e., those with high fitness values, are carried to the next generation 

as elite, or are crossed or mutated to produce new controllers. In addition, a small proportion of entirely new 

random candidates is introduced with the intention of maintaining diversity in the population. 
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Within the CPSwarm project, FREVO delegates the problem specification to the simulation run by the SMs and 

relies instead on the fitness values calculated at the end of each simulation to guide the optimization. FREVO-

XMPP was developed as a wrapper supporting XMPP communication to transfer candidate solutions to SMs 

and await fitness values. By integrating a work queue, FREVO is able to efficiently balance loads overs a large 

set of SMs and robustly handle failures that may occur during simulation. 

 

3.3 Integration of FREVO in the CPSwarm Workbench 

 

Figure 1 - CPSwarm reference architecture. 

The OT and the external simulators are integrated in the CPSwarm Workbench architecture (Figure 1), using a 

broker-based distributed approach, designed in Tasks 6.1 and 6.2. Deliverable D6.2 – Final Simulation 

Environment has introduced the final version of the Simulation and Optimization Environment architecture. 

This deliverable will only briefly describe the final version of the architecture, instead it provides a full 

description of the new APIs for the interaction between the OT and the simulation components, designed to 

enhance the scalability and reliability of the solution compared to the ones presented in D6.2.  

During the CPSwarm project, two different versions of the Simulation and Optimization Environment 

architecture have been designed: the initial one, described in D6.1 – Initial Simulation Environment, which, 

subjected to a performance analysis, offered limited performances due to an inefficient discovery mechanism 

and the large number of messages required between the OT and the simulators during optimization process. 

These issues have been addressed in the final version of the architecture first introduced in D6.5 Initial 

Integration of External Simulators and in [2] and fully described in D6.2, where also some new features that aim 

to enhance the scalability and the rapid deployment of the solution were also introduced. 

As already stated, the architecture is composed of three components: the SOO, which coordinates all the 

operations of simulation and optimization, the OT, which is the component responsible for developing 

candidates solutions as explained in Section 3.2 and finally a set of Simulation Tools, e.g., Stage1 and Gazebo2 

based on the Robot Operating System (ROS) distributed on several machines – namely Simulation Servers (SSs) 

- each one wrapped by a SM, allowing interaction via a standard interface. D6.2 has also introduced a set of 

features to improve the deployment and the scalability of the architecture, applying two new technologies: the 

software components of the Simulation and Optimization Environment have been refactored to run in one 

                                                
1 https://github.com/rtv/Stage 
2 http://gazebosim.org 
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container environment (e.g. Docker3). This allows several instances of ST to be run on each SS. Furthermore, 

the containerized components can be deployed and orchestrated dynamically using a rapid deployment and 

orchestration tool (e.g., Kubernetes4), which has been integrated in the SOO, allowing the user to simply set up 

the required set of STs to execute the desired simulation and optimization tasks. 

A prototype of this architecture has been already produced using Docker, Kubernetes and the eXtensible 

Messaging and Presence Protocol (XMPP) and all its native security features [3] for the communication among 

the components (please refer to D6.2 for its description). 

The next subsection will introduce the new Simulator API defined after a series tests done on the final 

Simulation and Optimization Environment architecture, using the prototype presented in D6.2. The main goal 

of this refactoring is to improve the reliability and scalability of the system. The API are introduced in this 

deliverable, presenting the relative optimization and simulation workflow. Their implementation is out of scope 

of this deliverable and will be presented in D6.7 - Final Integration of external Simulators due at M36. 

3.3.1 Refactored Simulator API 

Compared to the ones described in D6.2, these APIs have three main objectives: 

 Remove redundant fields: the description field has been removed as it was it unused. 

 Reduce the variety of messages: OptimizationStarted, OptimizationCancelled and 

OptimizationProgress have been merged into the OptimizationStatus message. 

 Define a way to restore an optimization process if something goes wrong during an optimization 

process. 

Table 1 will present the messages defined for these APIs. The following details are provided for each API: 

 Description of the API. 

 Components using this API. 

 Type of communication used (i.e., file transfer, text message). 

 Data included. 

 

Table 1 - Refactored Simulator API 

API Description 
Components 

involved 

Type of 

communicatio

n 

Data included 

SimulatorConfiguration 
Used to configure 
the selected STs. 

Sent by the SOO to 
all the selected 
SMs. 

File transfer. 
 

ZIP file including: 

 CPS models. 

 Environment models. 

 Other configurations (must 
include a SCID to be used by 
selected SMs to set as new 
presence status according to the 
following workflow explaination). 

SimulatorConfigured 

Replies to the 
configuration files 
sent from the SOO, 
indicating if the ST 
has been 

Sent by a SM to the 
SOO. Text message. 

 

Fields: 

 OID: The IDentifier (ID) of the 
optimization process. 

 Type: The type of the message 
(fixed value: 
SimulatorConfigured). 

 Success: Boolean value. 

                                                
3 ttps://www.docker.com/ 
4 https://kubernetes.io/it/ 
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successfully 
configured or not. 

StartOptimization 
Used to start an 
optimization task. 

Sent by the SOO to 
the OT. Text message. 

Fields: 

 OID: a unique ID assigned by the 
SOO that allows the optimization 
process to be tracked. Typically, 
it contains a refence to the 
corresponding simulation 
environment as well as the 
package to be optimized, for 
example cpswarm_sar. 

 Type: The type of the message 
(fixed value: StartOptimization). 

 Configuration: a JSON string 
containing the configuration of 
the OT. 

 SCID: a simulation configuration 
ID, which informs the OT, which 
SMs can participate in the 
optimization process. The OT 
monitors SM presence 
information and will run 
simulations on any SM 
configured for this SCID. This 
allows the SOO to configure and 
start SMs during an optimization 
according to available resources 
and the desired system 
performance. 

GetOptimizationStatus 

Used to get the 
status of a running 
optimization, 
specified by OID. 

Sent by the SOO to 
the OT. Text message. 

Fields: 

 OID: the ID of the optimization 
process to enquire about. 

 Type: The type of the message 
(fixed value: 
GetOptimizationStatus) 

GetOptimizationState 

Used to ask a dump 
of the state of a 
running optimization, 
specified by OID, 
including 
configuration and list 
of candidates of the 
current generation. 
This state will be 
used to restart an 
optimization in case 
of errors. 

Sent by the SOO to 
the OT. 

Text message. 

 

Fields: 

 OID: the ID of the optimization 
process to enquire about. 

 Type: The type of the message 
(fixed value: 
GetOptimizationState). 

OptimizationState 

Used to send a 
dump of the state of 
the current 
optimization, to be 
used to restart it in 
case of errors. 

Sent by the OT to 
the SOO, replying 
to 
GetOptimizationStat
e and by the SOO 
to the OT when an 
optimization 
process needs to 
be restarted 

File transfer. 

Zip file including: 

 The configuration of the OT.  

 The list of candidates of the 
current generation. 

OptimizationToolConfigur
ed 

Replies to the 
configuration files in 
OptimizationState 
sent from the SOO, 
indicating if the OT 
has been 
successfully 
configured or not 
before restarting the 

Sent by OT to the 
SOO. 

Text message. 

 

Fields: 

 OID: The IDentifier (ID) of the 
optimization process. 

 Type: The type of the message 
(fixed value: 
OptimizationToolConfigured). 

 Success: Boolean value 
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previous 
optimization. 

CancelOptimization 
Used to cancel a 
running optimization, 
specified by OID 

Sent by the SOO to 
the OT. Text message. 

Fields: 

 OID: the ID of the optimization 
process to cancel. 

 Type: The type of the message 
(fixed value: 
CancelOptimization). 

OptimizationStatus 

Used to reply to the 
StartOptimization, 
GetOptimizationStat
us and 
CancelOptimization 
messages. 

Sent by OT to SOO. Text message. 

Fields: 

 OID: the ID of the optimization 
process. 

 Type: The type of the message 
(fixed value: 
OptimizationStatus). 

 Status: The status of the 
optimization process: 

o ErrorBadConfiguratio
n: Optimization 
couldn’t be started 
due to bad 
configuration. 

o Running: 
Optimization is 
running 

o ErrorOptimizationFail
ed: Optimization 
stopped due to an 
unknown error. 

o Stopped: 
Optimization stopped 
by request from SOO 

o Complete: 
Optimization 
completed 
successfully 

 Progress: Progress of the 
optimization process in. 

 BestFitnessValue: The current 
fitness value. 

 BestController: The current best 
controller found in optimization. 

RunSimulation 

Instructs the SM to 
run a simulation 
using the specified 
controller. It can be 
sent by the OT 
during optimization 
or by the SOO to 
request a simple 
simulation. 

Sent by the SOO or 
by the OT to the 
SM. 

Text message. 

Fields: 

 OID: the ID of the optimization 
process starting the simulation. 

 Type: The type of the message 
(fixed value: RunSimulation). 

 SID: ID of the simulation, 
assigned by the OT. 

SimulationResult 

Returns the result of 
a simulation 
performed for 
optimization. 

Sent by a SM to the 
OT during 
optimization. 
 

Text message. 
 

Fields: 

 OID: The ID of the 
optimizationprocess. 

 Type: The type of the message 
(fixed value: SimulationResult). 

 SID: ID of the single simulation. 

 FitnessValue: The fitness of the 
controller, calculated by the 
fitness function. 

 Success: Boolean value. 
 

 

3.3.2 Optimization workflow  

The SOO can perform an optimization using the OT, where each controller candidate is simulated in a SS, as 

shown in Figure 2. 
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Figure 2 - Optimization workflow 

 

Figure 2 shows the messages’ flow among the SOO, the OT, and two exemplary SMs, during an optimization 

process. In the initialization phase, all components announce their availability by broadcasting presence 

information. The SOO and the OT collect this information to create a list of available SMs and their capabilities 

to be used, indeed the list is needed both by the SOO and the OT, because they need to select the SMs to use. 

Similarly, the OT's presence informs the SOO that it is ready to perform optimization tasks. When the user 

starts the optimization, the SOO evaluates the available SMs, selecting the ones that fulfil the requirements. 

Then, it transmits configuration files, to them, to setup the simulation (including, the CPS and environment 

models received by the modelling tool, the maximum number of simulation steps to be performed, etc.). The 

SOO assigns to all the configured SMs a unique Simulation Configuration IDentifier (SCID) that they set as 

status in their presences. Once all the SMs have confirmed to have been configured with a 
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SimulatorConfigured message, the SOO sends a StartOptimization message to the OT with the SCID to be 

used, which replies with an OptimizationStatus message including a unique Optimization IDentifier (OID), 

valid for the whole optimization process. The OT selects all the SMs that has sent a presence with the SCID 

indicated by the SOO, to be used for the optimization and, then, it begins the optimization, sending a sequence 

of RunSimulation messages to SMs, including the candidate controller to be evaluated. The SMs use the 

corresponding STs to evaluate the controllers and after having calculated the fitness score of the candidate, 

they send it to the OT, through a SimulationResult message. Throughout the optimization process, the SOO 

may request the progress of the optimization process intermittently or even cancel it by sending the OT a 

GetOptimizationStatus or CancelOptimization message respectively, receiving in response an 

OptimizationStatus message indicating the status of the optimization. Furthermore, periodically, the SOO 

sends to the OT a GetOptimizationState message to ask a backup of the current optimization state, when the 

OT receives this message, it sends back to the SOO a file containing the current configuration and the list of 

the candidates of the current generation, which can be used to restart the optimization (see Section 0 for 

details),  Once the optimization process completed, the OT sends a final OptimizationStatus message to the 

SOO, which includes the optimized candidate. 

 

3.3.3 Simulation workflow  

The SOO can also be used to send a specific controller candidate to a SM, for more in depth analysis. In this 

case, the OT is not involved, the SOO and SM communicate directly (see Figure 3) and the behaviour is the 

same indicated in the deliverable D6.2. This allows a controller optimized by the OT to be evaluated more 

thoroughly, e.g., through visual replay using the ST Graphical User Interface (for visual replay, the selected ST 

must run on a machine directly accessible for the user, so that he/she can see the ST’s GUI. In this scenario, the 

SOO uses the collected presences to select one SM among the ones suitable for that simulation. Then, the SOO 

sends to it, the required files and, after having received the SimulatorConfigured message, then sends to it, 

the candidate controller to be replayed.  

 

Figure 3 - The messaging sequence when simulating a specific CPS controller. 

3.3.4 Error recovery workflow  

The introduction of this new version of the API has allowed to introduce a set of new features relative to the 

reliability of the system and error recovery.  This is important because the optimization process, also with the 

use of the distributed architecture introduced by CPSwarm is a long process and the ability to recover to errors 

without the need to restart from the beginning is important. 
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For this reason, the partners have defined API to recover from possible failures in all the components of the 

system. These APIs are detailed in the following subsections. 

3.3.4.1 SOO error recovery 

If during an optimization the SOO fails or goes offline, the OT is informed in real-time through the presences. 

The optimization process is not stopped, because the OT communicates directly with the SMs, but if, when the 

process finishes the SOO is still offline, the OT instead to the send immediately the OptimizationStatus 

message to the SOO, it stores the result internally and sends it only when the SOO is back online. 

3.3.4.2 OT error recovery 

To address the possibility that the OT fails or goes offline during an optimization process, the partners have 

defined a mechanism to save and restore the optimization state. As shown in Figure 4 and outlined before, the 

SOO periodically sends the GetOptimizationState (identified by its OID) to the OT and store it locally. When 

the SOO receives a presence that indicate that the OT has failed, the SOO waits until the OT is back online. 

Then, it sends a GetOptimizationStatus, if the status indicates that the optimization is still ongoing (i.e., if 

there has been only a loss of connection between the SOO and the OT) the SOO continues to wait the 

conclusion of the process; instead, if the status indicates that the optimization is not ongoing, the SOO sends 

back to the OT the last dump file that it has received using the file transfer and when the OT sends back a 

OptimizationToolConfigured it send a new StartOptimization to the OT. In this way, the OT can start from 

the status previously reached (the last generation of candidate created) and not completely from scratch, 

largely reducing the time required to complete an optimization process, if some problem occurs.  
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Figure 4 - OT error recovery 

3.3.4.3 SM error recovery 

If one SM fails or goes offline during the optimization process and it is one of those used by the OT, when the 

relative offline presence is received, the OT can automatically stop to use it until the SM goes online again.  

To handle better this type of situation, the OT implements also a mechanism that allow the OT to add, during 

the optimization process, new SMs to the list of the ones to be used, just when they go online. This feature can 

be used to replace another SM that has failed, but also to scale on ongoing optimization, without stopping the 

process. 

The entire flow is shown in Figure 5. 
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Figure 5 - SM error recovery 
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4 Fitness function design  

According to the initial CPS system design optimization and fitness function design guidelines, presented in 

D6.3, a fitness function represents the desired behaviour of a swarm of CPSs. The best performance of the 

design optimization can be achieved by maximizing that fitness function. Such a function is evaluating the 

closest solution for the optimum on for a problem. While various names are used in the literature, such as 

fitness function, cost function or utility function, the function seeks to guide the optimization process towards 

a satisfactory if not optimal solution. While the function itself is highly problem-specific and thus there are no 

straightforward rules for its design, many studies in the field of evolutionary optimization have considered 

generic methods for fitness function design. In general, these methods may be categorized into a three-

dimensional fitness space [4] [5]:   

1. Functional vs. behavioural: A functional fitness is based on components that directly measure the way 

in which the system functions. A behavioural one rewards the system for displaying a given behaviour.  

2. Global vs. local: Global fitness rewards the system based on information that is available to an 

external observer, while the local one is restricted to information available to a single component.  

3. Explicit vs. implicit: An explicit function rewards the way in which a certain goal is achieved), while 

implicit fitness is focused on how much the goal is reached (e.g. a distance). Implicit functions are also 

extensively used in search algorithms operating in the behavioural space. 

4.1 Fitness function design guidelines 

As the fitness function design is completely related to each problem individually, as documented in D6.3, In 

the scope of the CPSwarm Workbench, the authors have mainly identified the main guidelines for a user for 

defining working fitness functions: 

Defining scope and modelling sub-problems for complex goals: As mentioned above, the fitness function 

for a problem is directly related to the specifications for that problem. Nevertheless, a good start for designing 

an effective fitness function is to define the specifications for a give problem. Moreover, if an objective proves 

to be too difficult for a system, it might help to decompose it into simpler sub-objectives with lower utility 

values, for example, to evolve robots playing soccer it is good to reward players for kicking the ball since it 

directly correlates to the number of goals and consequently to the fitness of the solution [5]. 

Topology of fitness landscape: In general, adversary fitness functions [6], fitness function with a large 

stochastic component (noise) and fitness functions with local cost minima can affect the optimization time and 

quality of optimization outcome. While the fitness is initially derived by the problem description, a refinement 

of the fitness function towards a "smooth topology" can significantly improve the result. Furthermore, the 

search space can be reduced by assigning high penalties towards unwanted behaviours (an example is a robot 

car that should go forward and orient itself, in this case, going backward could be excluded as behaviour). 

However, keep in mind that excluding certain behaviours accidently might cut off solutions which are not 

obvious but have superior performance in the end. 

Combined fitness functions: In many cases, the fitness function comprises orthogonal goals, for example, a 

robot swarm could have assigned a fitness to stay together, while having a second goal to move forward as a 

swarm. Typically, these goals can be easily expressed as separate fitness functions but not easily into a single 

combined one. Some optimization algorithms can perform a multi-dimensional search which yields results in 

form of a set of non-dominated solutions. After all, this requires a selection based on a combined fitness in 

before deployment, furthermore not all optimization algorithms in CPSwarm support this approach. Therefore, 

fitness functions are often described as a weighted sum of criteria, which shifts the problem of defining proper 

weights. While this ultimately depends on initial requirements, a quick guideline can be to normalize criteria 

based on their measured variance to get a set of equally matched criteria. 
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Computational effort to derive the fitness value: In some cases, where the fitness function is derived from 

a simulation of the target system, the computational effort for computing the fitness function can become the 

defining part of the overall evolutionary algorithm. In some cases, typically early in the optimization process, a 

simpler fitness calculation which is considerably faster could significantly speed up the process. For the example 

where a fitness function is derived by a simulation this could be done with fewer repetitions of simulations (e.g. 

averaging the results of a few simulations in the beginning and increasing this amount at later generations, 

where accuracy is needed), shorter simulation time (adjusting simulated time depending on generations) or 

reduced accuracy (simulating with larger time steps/lower resolution in early generations). 

CPSwarm Workbench aims to ease the problem-specific aspects of designing a fitness function as much as 

possible, as detailed in the following subsection. 

4.2 Fitness function design in CPSwarm workbench 

The CPSwarm Consorium has developed a tool integrated in the Modelling Tool, named Fitness Function 

Design Tool, which allows to design a fitness function starting from its mathematical model. This subsection 

will present the approach followed for the design of the fitness function and then its integration in the 

Simulation and Optimization Environment, then the next will present a concrete example based on the 

CPSwarm logistic scenario. 

In the CPSwarm Workbench, more specifically the modelling phase, the Workbench allows to design the fitness 

function to be associated with a behavior, to optimize parameters and simulation settings after that the same 

Modelling Tool (i.e. Modelio5) has been used to define the state machine to address the problem. The 

difference between parameters and simulation settings is that parameters are used by the algorithms to change 

the behavior of the CPS, instead simulation settings are used to setup the simulation (see Section 4.2.3 for 

concrete examples). Furthermore, as shown in the SAR scenario, presented in D6.3, using the state machine 

approach, the complex scenario can be subdivided in several more simplex states (e.g., the logistics scenario 

can be subdivided in several states) and then the fitness function can be designed for every state (e.g. only 

optimizing the parameters for the coverage of the warehouse). 

The Modelling Tool allows to describe the fitness function using mathematical expressions. When the fitness 

function has been modelled, the Modelling Tool uses this model to generate the code that will then be used 

in the rest of the Workbench.  

The model of the fitness function is stored also in the modelling library, to be reusable in different contexts. 

Furthermore, the library is pre-loaded with a set of default fitness functions associated with the behaviours 

designed for the proposed scenarios. For example, regarding the SAR scenario, the library could be preloaded, 

with default fitness functions, for all the possible states. 

Based on the model designed, the Mdelling Tool is able to generate a python script, which takes the inputs 

from the ROS bags6 (log files where during the simulation the messages, published on ROS topics are stored) 

and calculate the fitness score printing the result on the standard output. This script is executed by the SM 

each time a simulation is finished during an optimization process and then the value calculated is sent to OT. 

Finally, the Modelling Tool allows to the user to select the parameters and simulation settings that he wants to 

optimize. The list of the parameters and simulation settings are passed to SOO with the ranges to be used for 

each of them. The SOO instructs the OT to start the optimization on these parameters. After the results are 

ranked by the OT, the Simulation and Optimization Environment returns the configuration file with the 

optimized parameters to be deployed on the CPS to optimize the behaviour. 

                                                
5 https://www.modelio.org/ 
6 http://wiki.ros.org/Bags 
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After the introduction of the general approach, the next subsections will introduce a concrete example of how 

this approach is applied to the logistics scenario. 

4.2.1 Scenario Overview 

To illustrate the CPSwarm approach, the authors introduce the following scenario taken from the logistics 

domain. The logistics use case envisages a scenario where two classes of robots, scouts and workers, assist in 

moving boxes in a warehouse. The scout robots, equipped with a QR-code reading camera, rove around the 

warehouse space searching for boxes. Once a box is located, the scout notifies all workers robots of its location. 

Idle worker robots bid for the job of transporting the box to a specified location based on their current location, 

i.e. the distance to the box, and their remaining battery level. The selected workers move to the box, 

autonomously navigating around obstacles, lifts it using its elevator mechanism, moves to the destination, sets 

the box down and returns to an idle state. The entire scenario in its final version is described in “D8.4 – Final 

Swarm Logistics Demonstration” (M36). The simulation of this scenario is shown in Figure 6. 

For simplicity, each scout robot follows a random walk behavior: it picks a random direction and “walks” until 

it encounters a box, the edge of the operating space or a distance threshold has been exceeded. It then picks 

a new random direction and continues walking as before. As the distance parameter affects the effectiveness 

of the Scout coverage of operating space, it may be optimized for the specifics of the scenario. In addition, the 

number of scout and worker robots may be varied to affect the overall performance of the system. 

 

 

Figure 6 - Logistics scenario simulation 
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4.2.2 Fitness function 

The overall effectiveness of the system may be judged by its productivity, i.e. average time taken to transport 

all boxes to the goal area. This effectiveness of the system is expressed by a fitness function as described in 

the following equations. 

 Simulation time: 𝑡𝑠𝑖𝑚. 

 Total number of boxes to deliver: 𝑛𝑏. 

 Delivery time of a given box to the goal area: 

𝑇 = {𝑡𝑖|𝑖 ∈ [0, 𝑛𝑏)} 
𝑡𝑖 ∈ [0, 𝑡𝑠𝑖𝑚] 

 

 Average time of box delivery: 

𝑡𝑎𝑣𝑔 =  
∑ 𝑇𝑥

𝑛𝑏
𝑥=1

𝑛𝑏
 

 

 Fitness function is the percentage of average time delivery. 

 

𝐶 =  
𝑡𝑠𝑖𝑚 − min (𝑡𝑎𝑣𝑔, 𝑡𝑠𝑖𝑚 )

𝑡𝑠𝑖𝑚
∗ 100 

 

These equations have modelled using SysML parametric diagram, as shown in Figure 7. 

 

Figure 7 – Fitness function under the Modelling Tool 

The model designed is then exported in the python script (see ANNEX A). The script before reads the ROS bags 

to collect the info about the box moved by the robot, then the script calculates the fitness score as the average 

time required to move the boxes. This script is passed to the Simulation and Optimization Environment where 

it is used to calculate the fitness score to be associated to each combination of parameters set in the simulation. 

The parameters and simulation settings are set using the Modelling Tool as indicated in the next subsection. 

4.2.3 Optimization Setup 

As mentioned in Section 4.2.1, three different values may be modified during optimization: one is a parameter 

of the behaviour, namely the walk length; other two are simulation settings, i.e. the scout count and the worker 

count. Each parameter is tagged, in the modelling tool, as ‘optimizable’. By tagging a model element as 

optimisable, the user must specify a value range (with a minimal and a maximal values) and a step size as 

shown in Figure 8. 
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Figure 8 - Optimisable Parameter under the Modelling Tool 

 

Table 2 summarizes the specified of these.  

 

Table 2 - System parameters to be optimized 

Parameter name Minimum value Maximum value Step size Notes 

Walk_length 200 1000 50 
Random walk length 

in centimetres 

Scout_count 1 10 1 
Number of scout 

robots 

Worker_count 1 10 1 
Number of worker 

robots 

 

These values are exported by the Modelling Tool and passed to SOO and from SOO to the OT. The OT will 

optimize these parameters and simulations settings, producing as a result the combination of values that gives 

the best fitness score. In this example provided in this deliverable, the one that gives the less average time to 

move the boxes.  

Finished the optimization, the configuration file for the algorithm containing the optimized values for the 

parameters indicated in the Modelling Tool is produced by the SOO and then can be deployed using the on 

the CPS using the Deployment Tool. Furthermore, all the fitness scores obtained associated to the values set 

for the parameters and simulation settings to obtain them, can be checked by the user in a dashboard. In the 

example given, this can be useful for the user to select how many scout and worker robots to deploy in the 

warehouse. 
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5 Conclusion 

This deliverable has described the way in which the CPSwarm Workbench supports a swarm of CPSs design 

optimization using an evolutionary approach and the final guidelines for designing a fitness function to create 

the desired behaviour of a swarm of CPSs. The document introduces the API and the optimization workflow 

defined for the CPSwarm solution. Then, the authors present the final fitness function design guidelines and 

detail how they have been applied in the CPSwarm Workbench through the introduction of the Fitness Function 

Design tool.   
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Acronyms 

 

Acronym Explanation 

ANN Artificial Neural Network 

API Application Programming Interfaces 

CPSs Cyber-Physical Systems 

FREVO FRamework for EVOlutionary design 

GUI Graphical User Interface 

ID IDentifier 

NNGA Neural Network Genetic Algorithm 

OID Optimization IDentifier 

OT Optimization Tool 

ROS Robot Operating System 

SAR Search and Rescue 

SCID Simulation Configuration IDentifier 

SM Simulation Manager 

SOO Simulation and Optimization Orchestrator 

SS Simulation Server 

ST Simulation Tool 

XMPP eXtensible Messaging and Presence Protocol 
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ANNNEX A 

 

import rosbag, sys 

def fitness(): 

  if (len(sys. argv) != 3): 

    print " Logistics fitness function calculator  Usage:\n fitness.py [bagfile.bag] [maximum simulation time]\n " 

    sys.exit(1) 

 

  bag = rosbag.Bag(sys.argv[1]) 

  max_time = float(sys.argv[2]) 

  start_time = float(bag.get_start_time()) 

  time_sum = TimeSum ("target_done", start_time, bag)   

  box_count = BoxCount("target_done", bag)          

  average_clipped = Average_cliped(time_sum, box_count, max_time) 

  fitness = Percentage(max_time , average_clipped) 

  print fitness 

  

def Average_cliped(p1, p2, p3): 

  return min (p1 / p2, p3)  

    

def Percentage (p1, p2): 

  return (p1 - p2) / p1 *100 

   

def BoxCount(event, bag):  

  result = 0 

  for subtopic, msg, t in bag.read_messages(event): 

    result += 1 

  return result   

   

def TimeSum(event, time, bag):                         

  result = 0 

  for subtopic, msg, t in bag.read_messages(event): 

    timeMsg = TimeMsg(msg) 

    result += timeMsg - time 

  return result  

   

def TimeMsg(p1) :                                 

  return float(p1.header.stamp.secs)   

fitness()   


