D7.5 - INITIAL MONITORING AND COMMAND FRAMEWORK

Deliverable ID D7.5
Deliverable Title Initial Monitoring and configuration framework

Work Package WP7 — Deployment Toolchain

Dissemination Level PUBLIC

Version 1.2
Date 2019-09-30

Status Final

Lead Editor TTTECH, TTA

Main Contributors Artiza Elosegui, Paraskevas Karachatzis, Andreas Eckel
(TTTECH, TTA)

Published by the CPSwarm Consortium

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731946.

Document History

R——
S Y a."‘%‘u‘_‘;}“-.

UJor

Version Date Author(s) Description
Artiza Elosegui
0.1 2018-09-14 (TTTECH, TTA) Table of Contents
0.2 2018-10-08 Artiza Elosegui Inputs from Searchlab. Sections 2, 3, 4, 6 updated
' (TTTECH, TTA) | P ' » 5 4O UP
Paraskevas
Karachatzis & |Updates according to the latest implementations, Sections
03 2019-03-19 Andreas Eckel |3,4,5,6,7
(TTTECH, TTA)
0.9 2018-10-31 Andreas Eckel First draft ready for internal review
‘ (TTTECH, TTA) y
Paraskevas
Karachatzis & |Updates according to the latest implementations, Sections
11 2019-09-19 Andreas Eckel |3,4,5,6,7
(TTTECH, TTA)
Paraskevas
Karachatzis &
1.2 2019-09-30 Updates & corrections according to internal review

Andreas Eckel
(TTTECH, TTA)

Internal Review History

Review Date Reviewer Summary of Comments

Gianluca Prato . .
03-11-2018 (LINKS) Approved with minor comments

Davide Conzon . .
26-09-2019 (LINKS) Approved with minor comments

Farshid Applied minor modifications. Added comments for further

2019-09-25 | TAVAKOLIZADEH PP S

(FRAUNHOFER) P '

Deliverable nr.
Deliverable Title
Version

D7.5

Initial Monitoring and command framework
1.2-2019/09/30

Page 2 of 32

1 Executive summary

This deliverable, namely “D7.5 - Initial Monitoring and command framework”, introduces the development
of the so-called “CPSwarm Monitoring Tool”. The Monitoring Tool is the result of the “Task 7.3 CPS/SoS
Monitoring and Command Tools". The consecutive results until M34 will be reported in “D7.6 — Final Monitoring
and command framework”.

The document introduces the CPSwarm Monitoring Tool architecture and implementation description as well
as screen shots from the implementation. The tool has been developed up to a lab quality prototype level and
will be further developed for product beyond the scope of this project.

The Monitoring and Configuration framework is integrated for use in the Search & Rescue and the Automotive
Scenarios (Platooning Use Case). It is also designed for use in the Logistics Scenario but not implemented there
since the more straight-forward solution for robotics was to use their control / monitoring approach.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 3 of 32
Version | 1.2 -2019/09/30

Table of Contents

Document History

1
2

10 Acronyms

1

Executive summary

Introduction

2.1 Document organization

2.2 Related documents

Requirements of the industrial application scenarios
3.1 The Automotive Scenario and the Search&Rescue (SAR) scenario requiremMents..........ceceevvevereeererernrennns 6
3.2 Logistics scenario requirements

The Monitoring Tool in the CPSwarm architecture

Communication Library

The Monitoring Tool and COMMANG TOO ...ttt sttt ssssssss s ss sttt ssnsssas 11

6.1 Overview 11

6.2 Communication Library integration
6.3 Implementation of the State Machine

6.4 Configuration panel
6.5 IMNIPIEMIENTALION oottt bbb bbb e bbb

Use case specific configuration of the Monitoring and Command TOO! ..o 28
7.1 The Monitoring and Command TOO! INSTAIIATION ...t aseeens

7.2 The Monitoring and Command Tool Configuration
7.3 The Monitoring and Command Tool Running

Next steps

Conclusion

1 List of figures

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 4 of 32
Version | 1.2 -2019/09/30

2 Introduction

This “D7.5 - Initial Monitoring and Command framework" is a public deliverable focused on the design,
development and implementation of the Monitoring Tool. It details the status of the Monitoring Tool
component and its implemented features responding to the requirements of the use cases/scenarios.

This deliverable is the result of the “Task 7.3 CPS/SoS Monitoring and Command tools”. Another deliverable
called "D7.6 Final Monitoring and Command framework” will be released in M34 describing the final version
of the tool and the implemented features.

TTTech is the T7.3 leader and responsible for the delivery of D7.5. As such, TTTech leads the development of
the Monitoring Tool with the requirements received from the use cases/scenarios. SLAB provided the
Communication Library which was crucial for the implementation of the Monitoring Tool.

2.1 Document organization

The document is organized as follows:
Besides the “Executive Summary” and the “Introduction” sections, the document is composed as follows:
e Section 3 provides an overview on the requirements from the three use cases/scenarios for the
Monitoring Tool.
e Section 4 provides an overview about the architectural embedding of the Monitoring Tool in the
CPSwarm environment
e Section 5 describes how the Monitoring Tool is related to the Communication Library
e Section 6 describes the Monitoring Tool as such including the services and the implementation as seen
also from the user interface
e Section 7 is wrapping up and provides a short conclusion
e Section 8 provides the acronyms table

2.2 Related documents

ID Title Reference Version Date
[RD1] Final Vision Scenarios and Use Case Definition D2.2 1.0 M16
[RD 2] Updated System Architecture Analysis & Design D3.2 1.0 M18

Specification
[RD3] Final Monitoring and Command framework D7.6 M34
[RD4] Initial CPSwarm Abstraction Library D7.1 M18
[RD5] Initial Automotive demonstration D8.5 M24
[RD6] Final CPSwarm Abstraction Library D7.2 M32

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 5 of 32
Version | 1.2 -2019/09/30

3 Requirements of the industrial application scenarios

The development of the Monitoring Tool has been scheduled based on the requirements claimed from the
partners of the three Industrial Application Scenarios, namely a) the Search & Rescue Scenario, b) the
Automotive Scenario and c) the Logistics scenario. The implementation of a first set of requirements is
considered completed by now. However, the relevant development activities will continue and focused the
additional features until the delivery of the final version of the tool in M34.

Next, the requirements of the three scenarios are listed. This list is the result of the work done in WP2 for the
requirements engineering.

3.1 The Automotive Scenario and the Search&Rescue (SAR) scenario requirements

These two Industrial Application Scenarios widely share the same requirements given that the area to be
monitored is bigger than the logistics scenario. The Monitoring Tool shall be capable of handling the following
services:

1) Visualization of the location of the swarm members (latitude, longitude).

2) Alist of all swarm members along with important runtime data (topics), selected by the user.

3) Recording and visualization of all events sent in the swarm.

4) Visualization of the route for each swarm member.

5) Selection of individual swarm members.

6) Ability to manually trigger events in the swarm, either to selected swarm members or the whole swarm
(using the discovery of the communication library).

7) Hotkeys for events such as: Start, Stop.

8) Setting global parameters to the swarm: distance_object (distance to keep from front object), max
speed (hard limit on the speed), etc.

3.2 Logistics scenario requirements

Visualization of the following:
9) The cart that is assigned to each robot.

10) The path that each robot has to follow.

11) The location which the requested card must be sent to.
12) The number of available robots.

13) The assigned missions to each robot.

14) The list of the missions and their status.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 6 of 32
Version | 1.2 -2019/09/30

o a ™
e L 2N

uJarrm

4 The Monitoring Tool in the CPSwarm architecture

Figure 1 shows the final CPSwarm architecture in its functional view, which outlines the relationship between
components. This figure refers to this component as the Monitoring & Command Tool to better reflect its

functionalities.

Modelling =
Tool I Models,
artefacts

CPSwarm Libraries

Simulation and Optimization Environment

Monitoring &
> Command —
[ool

Monitoring configuration
A A
Models Models,
v artefacts
: > Simulation & Optimization Teleme Runtime
Mf_gelhng < Orchestrator da,a"y command
ibral s
3 Launcher Optimized v
Service Code
Behaviour fiefacts PR : ;
Libra Optimization Simulation
i Tool Manager Deployment
information

Generated code

CPSwarm Workbench

Source code

Models,
artefacts,
code
P Deployable
Code g \| Deployment I code
Generator 'l Tool |

Runtime Environment

Figure 1: Architecture Design

The Monitoring Tool runs in the Runtime Environment. After the deployment phase, the Monitoring Tool is
necessary to monitor the actual status of the swarm, as well as to send configuration commands and, if required
reconfiguration commands to modify / update the swarm behaviour, e.g., to abort the mission or to re-purpose
part of the swarm members. On one hand, it gathers real-time data from the swarm members and on the other
hand, it sends out runtime commands to the individual swarm members. The information gathered will be
presented to the user through the Graphical User Interface (GUI) generated in launch time.

Data exchanged between the swarm members and the Monitoring Tool, natively exploits a Publish/Subscribe
interaction pattern to account the fact that:

1. Multiple listeners might need to receive telemetry or sensory data, on a dynamic subscription basis.
Publish/Subscribe natively support this requirement by decoupling event sources from event
consumers.

2. Data may be transferred opportunistically, depending on the actual connectivity and network
conditions. This prevents the adoption of any client-server-like interaction paradigm where the Cyber
Physical System (CPS) acts as server. Cases in which the CPS plays the client role are possible, however
they might not be suited for high-frequency / high-cardinality data streams.

The information flow between the Monitoring and Command Tool and other components within the CPSwarm
system are:

Deliverable nr. | D7.5
Initial Monitoring and command framework
1.2-2019/09/30

Deliverable Title Page 7 of 32

Version

g
e ﬂ.:"!:;‘_"g}.‘\.

MONITOTING &
LAUNCHER SWARM DEVICE COMMAND TOOL
Message 1 .
>
Message 2 .
P Message 3

Figure 2: Monitoring Tool phase sequence diagram

The user/operator monitors the real-time status of the swarm as well as changes its behaviour during runtime
(Figure 2).

The Web Browser needs to be opened to start the Maintenance and Monitoring Tool. After the Monitoring
and Command Tool is launched, a swarm device discovery phase will be carried out, in which the swarm device
will send data regarding its properties to the Monitoring and Command Tool (see Figure 2, Message 1). After
that, the Monitoring and Command Tool is ready to monitor and command each member in the swarm.
Message 2 (see Figure 2) represents the data flowing from the swarm device to the Monitoring and Command
Tool. It contains the real-time status of the CPS, such as the current location, current speed, current battery life,
etc. Message 3 (see Figure 2) represents the commands sent from the Monitoring Tool to the swarm, such as
changing swarm behaviour, shutting down the swarm, etc.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 8 of 32
Version | 1.2 -2019/09/30

5 Communication Library

The Monitoring and Command Tool uses the Communication Library — libswarmio — to send and receive events
and telemetry, to set and read-back parameters and to discover swarm members on the network.
Alternatively, the libswarmio can be used via the Robot Operating System (ROS) bridge allowing the ROS
messages to be propagated to other agents or tools (using the libswarmio, see Figure 3.

Please, refer to D7.2 “Initial CPSwarm Abstraction Library” for the full description of the Communication Library

7)) [
c
.2 g i '
3 MOT"t°r'“9 A SwarmROS Command Line Tools : !
= Configuration Tool ; '
2 | '
(N RS
C++ API
2 | i
& Discovery Event Telemetry Key-Value Ping :
E Service Service Service Service Service ! i
(7] . i
N ! o
o E
Endpoint interface @
7
S =
()
o '
3 :
° Zyre ' SwarmlO
o '

Figure 3: The architecture of the Communication Library

The Communication Library provides a service oriented, cross-platform solution for performing common
actions with swarm members. Development of the Monitoring and Command Tool and the Communication
Library, and the design of the services provided by the latter and the functionality that is required to be
implemented by the former went hand-in-hand with the efforts to efficiently model and describe the
networked interaction of swarm members. As such, the following basic services are provided by the
Communication Library (pls. note that only some services are highlighted herein, the others are described in

detail in D7.2):
a) Event Service
b) Telemetry Service
c) Key Value Service
d) Discovery Service

Event Service

Swarm members send and receive events as their behavior is executing — informing other members of
important events and reacting to external and internal stimuli in order to change or modify the current state
of execution. An event, on its own, has only a name and a list of parameters — it is only how the behavior
reacts that makes the event meaningful. As such, events can represent commands issued by the operator,
real events happening on a local or remote node or other simple messages that aid coordination. The

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework

Version | 1.2 -2019/09/30

Page 9 of 32

- . L

- -
. S0 .
e O I SR t:-....

Monitoring and Command Tool can use the Event Service to send arbitrary events to swarm members (in
order to issue commands) and can monitor events as they are happening on swarm members.

Telemetry Service

For the operator to receive meaningful information about the state of each swarm member, a continuous
stream of information needs to be sent by the swarm members being monitored to the Monitoring and
Command Tool, and eventually, to the operator. The Telemetry Service can be used to subscribe to such
information on-demand, specifying the required resolution and scope of the information. All data sent back
is strongly typed and can have complex schema. Each telemetry value (however complex) is treated as an
atomic value relevant to a single time point. The Monitoring and Command Tool uses the Telemetry Service
to display and visualize the key elements describing the state of individual swarm members.

Key-Value Service

Parameters such as the operational area or the location of known obstacles are subject to change during
deployment, and as such, need a way to be set during the mission. The Key-Value Service provides a way to
write (and read) complex named values on swarm members — values the behavior can use to perform
calculation and make decisions. The Monitoring and Command Tool uses the Key-Value Service to retrieve
and set the parameters that govern swarm member behavior.

Discovery Service

The Discovery Service is responsible for detecting the supported features of participating swarm members.
In order to make the Monitoring and Command Tool a universal tool for the management of compatible
swarms, regardless of specific behavior or target hardware, the Communication Library provides a way to
obtain a description of the events supported by each member and of the different telemetry and parameter
values and their underlying data types. The Discovery Service works on two layers: the lower layer, provided
by the specific endpoint implementation, is purely responsible for detecting the presence of swarm members
and tracking their online-offline states — while the higher layer can request and answer, as well as cache and
invalidate information about the supported facilities.

Taking advantage of these services, the Monitoring and Command Tool can present a toolset and user interface
that is independent of the communication medium and the concrete implementation of swarm member
behavior. Since the Communication Library uses Google Protocol Buffers' for serialization, changes in the
underlying data schema can be made while retaining backwards compatibility, making it possible to interact
with newer (and in some cases, older) versions of the library — while not recommended, this allows for
incremental updates and ensures that the serialization format is architecture independent.

The communication between the Monitoring and Command Tool and the Abstraction Library is intermediated
by the Communication Library. Exploiting the discovery functionality provided by the Communication Library,
the events and topics of the swarm members can be discovered. Using this information, the interface of the
Monitoring and Command Tool can be dynamically generated to let the user to send events and to filter the
data coming from the swarm member keeping only the one that the user has selected to see.

The list of commands that can be sent to the agent is exposed to the Monitoring and Command Tool through
the discovery feature of the Communication Library. Sending commands from the Monitoring and Command
Tool is possible to influence the behavior of a specific CPS triggering events that start the execution of a
particular sequence of actions.

Ihttps://developers.google.com/protocol-buffers
Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 10 of 32
Version | 1.2 -2019/09/30

https://developers.google.com/protocol-buffers

6 The Monitoring Tool and Command Tool

6.1 Overview

The Monitoring and Command Tool addresses the challenges related to the after-deployment phase, i.e., to
the swarm device mission execution. Its main objective is to monitor the swarm members’ behaviour by
constantly supervising the individual swarm members, the swarm behaviour and performance. Rather than
applying local control, it offers the means for continuously checking the performance of real swarm with respect
to the mission to reach. In addition to monitoring, the Monitoring and Command Tool also tackles (re-
yconfiguration of swarm members’ parameters depending on external factors.

Swarm members can receive commands, e.g., to switch between pre-programmed behaviours, and/or
configuration parameters through the channel established by the Monitoring and Command Tool, exploiting
the telemetry core of the runtime environment.

Appache 2 Monitoring &
cgi enabled Configuration Tool

\
RPC response | RPC request

Monitoring &
System Service e Configuration Tool
Service

Figure 4: Monitoring & Command Tool structure

The Monitoring and Command Tool operates like a web page which itself consists of several entry points.
The System service (like a binary) user space service is using the libswarmio library (Communication Library)
running continuously on the background polling the status info permanently to have updated values available
at any time. The Monitoring and Command Tool sends query and receives response about the information
requested (See Figure 4).

Legend:
e Apache 2: open-source HTTP server, pls refer to https://httpd.apache.org/.

e cgi: common gateway interface, pls refer to https://httpd.apache.org/docs/2.4/howto/cgi.html
e RPC: Remote Procedure Call, pls refer to https://de.wikipedia.org/wiki/Remote Procedure Call

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 11 of 32
Version | 1.2 -2019/09/30

https://httpd.apache.org/
https://httpd.apache.org/docs/2.4/howto/cgi.html
https://de.wikipedia.org/wiki/Remote_Procedure_Call

OpenStreetMaps?

The environment visualization is ensured since the Monitoring and Command Tool is created based on the
OpenStreetMaps® API. OpenStreetMap is a global collaborative (crowd-sourced) dataset and project that aims
at creating a free editable map of the world containing information about the environment. It contains data
for example about streets, buildings, different services, and land use. OpenStreetMap provides free editable
maps of the whole world and is a restriction-free mapping solution that can be used for commercial and non-
commercial usage which any limitation.

Although our first attempt was to use the Google Maps API,* at the end we concluded that the Open Source
solution offered by Open Street Maps was more appropriate since we were looking for more customization
and control. Open Street Maps provides ability to manage things according to our requirements.

The Web Interface is implemented by a Javascript application.

In order to handle the maps (recommended: Google Maps, OpenStreetMap, other maps are possible as well)
and the layers to visualize on top of them the Leaflet> Javascript framework is leveraged. With Leaflet, it is
possible to visualize the layers as KML® files, which are basically Vector Graphics. They use the leaflet-
omnivore functionality provided by Leaflet.

The Web Interface consumes REST Web Services from an HTTP server in order to get static and historical
information and it is also connected to an MQTT Broker using an MQTT’ Javascript client to monitor the agents.
In CPSwarm case we would substitute it with request & reply service function as described above.

6.2 Communication Library integration

The first integration of the Communication Library into the Monitoring Tool has been carried out in 8 steps in
the first iteration:

» Key Pair Configuration Panel

« Key Pair Monitoring

* Key Pair Value Set

« Event Trigger Generation

+ Event Sending

+ Telemetry Configuration Panel

+ Telemetry Monitoring

+ Telemetry Set

The Communication Library does not support arrays for the first iteration. In order to visualize the path of the
agent, as required by the Logistics use case, multiple points are needed and now this is not possible to do
using the Communication Library.

In the second iteration of the integration of the Communication Library into the Monitoring Tool, the following
steps were implemented:

« Communication Library Functions Integration

* Add common Events

« Add user generated Events

* Add object popups

+ Agent selection

2 https://www.openstreetmap.org/
3 https://www.openstreetmap.org/about
4 https://developers.google.com/maps/documentation/?hl=de and https://cloud.google.com/maps-platform/
5 https://leafletjs.com/
6 https://developers.google.com/kml/documentation/
7 http://matt.org/

Deliverable nr. | D7.5

Deliverable Title | Initial Monitoring and command framework Page 12 of 32
Version | 1.2 -2019/09/30

https://www.openstreetmap.org/
https://developers.google.com/maps/documentation/?hl=de
https://cloud.google.com/maps-platform/
http://mqtt.org/

In the third iteration of the integration of the Communication Library, two steps were required:
* Area of operation selection
+ Send commands to individual targets

The last step is covered in the second version of the tool (already done in the current version):
+ Event Monitoring

6.3 Implementation of the State Machine

As kind of a top-level layer we have implemented a State Machine-controlled structure on top of the
Monitoring and Command Tool. The Monitoring and Command Tool certainly can also be operated not using
the top-level control software as it is currently done in the Search and Rescue Scenario. The state-machine
approach is used in the Platooning use case of the automotive scenario.

Initially also meant to be only needed for the platooning use case, we found out that in principle swarm
applications will find it useful since they will have similar challenges as also tackled by the State Machine
approach. These could be that the drones would fly in formation for a certain time until they reach the area of
final operation in order to dissolve and conduct search and rescue functions on an individual basis. The same
could arise in the logistics case. Consider that there would be more than one box to transported from position
"A" to one and the same final destination. In such case it is quite likely that the carts would form kind of a
platoon as well. These are just some ideas and are not generally deployed within the project. Nevertheless, this
was the reason to also highlight this in the Monitoring and Command deliverable document since we thought
that it is not limited to the automotive scenario and the platooning use case.

A principle design of a State Machine described in D4.6 and contributed by LAKE was the blue-print for the
approach implemented in the Monitoring and Command Tool (See Figure 5).
The following “level one” states were defined:

a) Start-up

b) Idle

¢) Wait Response

d) Select Ride

e) Goto Meeting Point

f) Joined

g) Follow Lead

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 13 of 32
Version | 1.2 -2019/09/30

JoinTogether (enter into goto meeting point, exit from joined);

[following vehicle

mission abort/mission over split

Figure 5: State Machine approach

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework
Version | 1.2 -2019/09/30

Page 14 of 32

6.4 Configuration panel

The configuration panel is generated dynamically by the communication library. The user can enable/disable
topics.

The following few examples using the Automotive Scenario (Platooning) are documented by screenshots from
the Monitoring and Command Tool screen showing a complete platooning mission on the Monitoring and

Command Tool screen.

D 127.00.1/indexht: x Loy

Abort Mission

1
{"delay":10}
worklaptop testEvent {value™:1}

Figure 6: Platooning planning

Figure 6 shows the planning start for the platooning mission on the Monitoring and Command Tool screen.

Figure 7 displays the Configuration Panel of the Monitoring and Command Tool.

In the Configuration Panel the key parameters of the agents/swarm can be set (i.e. in the platooning scenario
this would be the cruising speed, accept/deny platoon participation, different kinds of threshold values, etc.).
Based on the events advertised by the agents the user can send events and its associated parameters
concerning the individual agents or to a group of agents.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 15 of 32

Version = 1.2-2019/09/30

I
3 “.”?‘;2'?%\.

ouJar

[Parameter Configuration

Options:
Parameter Configuration:
ubuntu

+ cxamples/boolParameter(bool):
false

+ cxamples/doubleParameter(double):
25

+ cxamples/intParameter{int):
1024

+ cxamples/readOnlyParameter{string):
Can't change this

+ examples/stnngParameter(string):
unknown

Event Generator

Event Generation:

DHRKeswS

+ join_platoon:
o meeting(string):

|Send to Selected|Send to All
decline:
|Send to Selected|Send to All
completed:
|Send to Selected|Send to All|
* 1MIS50N_OVEr
|Send to Selected|Send to All|
leave platoon:
|Send to Selected|Send to All|
* ission_start:

o destination(string):

|Send to Selected|Send to All
* accept:
|Send to Selected|Send to All
shut_down:
|Send to Selected|Send to All|

ubuntu

* cmergency:
o severity(int):

o where(string):

Figure 7: Configuration Panel

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 16 of 32
Version | 1.2 -2019/09/30

€ 2 C 0o

® Chromium isn't your default browser [EESEEERPETE

Start Mission

| Abort Mission

(] |

QuihKhir state_change | “new_state™ "start_up", "old_state': "start_up”)

Figure 8: Basic Monitoring and Command Tool user interface

Figure 8 shows that 3 trucks are detected. One of them is OFFLINE due to connection lost.

@ 127.001 *x

€ 2 C 0nem

Start Mission

Abort Mission

1 *new_stste™: “idle”, “old_state”: “start_up®)
{ “new_state™ “start_up", "old_state": "start_up")

Deliverable nr. | D7.5

Deliverable Title | Initial Monitoring and command framework

Page 17 of 32
Version | 1.2 -2019/09/30

e
e LAY

ouJarrm

| Start| [Herzoge | [St.Poelten | | Atzen | | Sieghar |

Select All Daselact Al | Parameter Configuration

Options:

Parameter Configuration:

Event Generator

Telemeny View

Event Generation:

2 E;mxus substans speed Sl
[|
" J test 55,5555

« leave_platoon:
OFFLINE Send 1o Selected|Send Lo All
Telemetry View o mission start
o destination(string):
|Madrid
Send to Selected|Send to All
» accept:
Sond 0 SeectedfSend o Al
o shut down:
EEer:I 10 E!éi-!acted;';ﬁ-ewd-.ln All|
» decline:
Send to Selected|Send to All
» join_platoon:
o meeting(string):

Send 1o Selected|Send 1o Al
« completed:

Send to Selected| Send to All|
* MiSsS0N_OVer:

Send to Selected|Send to Al

OQIsvDSE
akK1FOHIR

Figure 9: Configuration Panel: in the entire screen view (figure above) and the panel zoomed for better
readability

Figure 9 shows the Monitoring and Command Tool with the Configuration Panel opened. The events and
parameters are generated from the discovery functionality of the communication library.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 18 of 32
Version | 1.2 -2019/09/30

e S

[QuihKbIr
status
select_role
ONLINE
Telemetry View

substatus
GOTO_MEETING_POINT

speed
55.555556

mission pos
error error

substatus: GOTO_MEETING_POINT
admin_prio: 14372645
incoming_messages: 39979
destination:
o longitude: -3.7037902
o lattude: 40.4167754
« route:
o lat
48.2086348,48.209148,48.2096569,48.2105,48.2101391 48.21227469999999 4:
o Ing:
{'1593740669.16 3729063,16.3718851,16.373457,16,3741712,16.3765896,16,38€
« status: select_role
« location:
o longitude: 16.65414
o latitude: 48.74477
¢ speed: 55.55555555555556

Figure 10: Telemetry data displayed

Figure 10 shows the telemetry data panel opened for the first truck (agent).

127,0.0.1 - Chromium

C @ 127001 %" W E

[Herzoge | [St Poelten | [Sieghar |

< S0 o,
.

rY{-.’~‘~Monitoring and Control Tool

SelectAll Deswiect A

Langeniats

Krems an
“der.Donay

i,

Yobs ah
der Conau

Stockerau

Werzogenhung

» g Boden

Ebrexhsdorf

{ "new_state": "shortest_path”, “old_state"- "idle" }

Mistebach E3

SULKERYE
s
-
ONLIE
Telemetry View

P

pacd
test 5 35556

Figure 11: Platooning preparation phase (second truck seeking platooning)

Figure 11 shows the situation at the panel where the platooning is prepared. The request for platooning is sent
by the first Truck to the second Truck (“first truck” & “"second truck”: these names must be defined in the
communication library) and is awaiting confirm to agree in driving in platooning configuration.

Deliverable nr. = D7.5
Deliverable Title

Version | 1.2 -2019/09/30

Initial Monitoring and command framework

Page 19 of 32

B ‘.."'it"g};..

kY

UJor

127,0.0.1 - Chromium

€« C @201 "
% wéﬁ&*{-‘Monitoring and Control Tool [Herzoge | [StPoelten| [Atzen] [Siegha

i "\\»,w‘_, f\‘\(,*g / /

') Telemetry View
. B .
7 Yitaretn's GRZESOMN
s wbsws owd wiska 0
A snamst parm st SSEEE ener e
g F " ONLINE
Frohtat /ﬂ 3 Telemetry Vien
)

" Malaghy
ol 2)
(PR o £X
unz Flosterneubury,
\ ¥

o

dose u721Uzh3 state_change | "new_state”: “shoctest_path”, "old_state’; “idle”

ciose GAZKSIWM sate_change | "new_stace"; “shortest_pach”, "old_siate”; “Idle” |

Figure 12: Platooning preparation phase (first truck ready to agree in platooning lead)

Figure 12 shows the status of the first truck (platooning lead).

127,0.0.1 - Chromium

€« s C g :
. oV ” &
S a?«':?a..-*Momtonng and Control Tool [Starnt| {Herzoge | [StPoelien| [Atzen| [Siegha
B SelectAll | Deswiect M
Start Mission =
m—
e, :
:ﬁ : 2 Telemety View
) (Fuikeryd) Kiostomaubirg
k- Vbs & 2
der Danou N
(awr alhetmsbure o {2 25
,.' Ebrexhsdort
7 = 7 R Esenstadt
L S R

Details
tlose. ENIQIYMS

closa SULKERyS
oo sULKERy4
cicae SULKERy4
oo SULKERy4 state_change
dose BOIQIYMS state_change

Figure 13: Start the “platooning mission”

Figure 13 shows the status when both trucks agree to go in platooning configuration and start the “mission”.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 20 of 32
Version | 1.2 -2019/09/30

€« [+

X w-o-ﬁ:?*ﬁ'-‘Momtonng and Control Tool

@ 127001

[Stant] [Herzoge | [St.Poelten| [Sieghar |

B SewcAll | Doselect M

Start Mission [e |
N Langerdois
Abort Mission Telemery View
Kedin a0
des, Bana
b v <sockerau
) 2 Telemeiry View
Py -
i v [aERd) ‘
2 Klostesncuburg
! "
£
0
=h
i
ften)
Walbetmyburg ST Wkt Py
SUVeran
yink gerGatsen
Raden | A
)
74 Ebreshsdort
'} L
¥ | St
o= 8 Tl V4 ' Esenstadt
Y sl ¥ s et | Mo Qsin & Cyape B Gareradors, £C. Y54, nagoy © Mg
Details
dose sULKERy4 { “new_state™: *select_role”, “old_state”: "free_driving” |
dosa EQQIYMS [“new_state” : "free_dibving” |
aose EQIQIYMS { “new_s\
closy SULKERy4 | “new_state
wose EUOIYMS { “new_staee™ |
diome SULKERy4 “new_sia)
dose EUIQIYMS { “new_state”; *search_platoon_delay”, “old_state”! “shortes:_pach” |

Figure 14: preparing for the “rendezvous”

Figure 14 shows the situation where both trucks are preparing for the rendezvous (the procedure of the two

vehicles meeting at agreed position).

1 Chrombum

Start Mission '
Abort Mission 4

Kisme

et Danisi,

itcegre Wl

wilhelmsaucg

St Uit an
decGcisen
1 aden

Ebroichsciort

5ot | Wy

cnsn sULKERy4 sute_change *iree_driving” |

cose EONYYMS state_change “seluct_role ee_driving” |

e EOXXYM3 stale_change *free_driving “wall_sesponse” }

cxse SULKERy4 free_driv *wail_sesponse” |

cose EDXYMS “wall “search_plaman_delay”)
close SULKERy4 new te”: “walt_response”, "ol delay™)
cran EOXPFYMS “neve_state”: *search_platocn_delay”, "ald_state": “shortest_path* |

Figure 15: Rendezvous

D7.5
Initial Monitoring and command framework
1.2-2019/09/30

Deliverable nr.
Deliverable Title
Version

[Start| [Herzoge | [StPoetten| [Atzen| | Sieghar|

an Ot Al

rastelbach

| elereeyviews |

Telemetry View

Page 21 of 32

o ‘*""-"-_":?m‘..

o

ouJar

Figure 15 shows that the first of the two trucks is arriving at rendezvous point and slows down to meet the
other one for starting to drive in platooning configuration

127,0.0.1 - Chromium

« C @270 b4

S PP
wa}rﬁ*Momtonng and Control Tool [Herzoge | [SLPoelten| [Atzen] [Sieghar
Start Mission Wapim s SULKERYS .
S, T e
: W o o =E
Abort Mission i i swcamsart - D;Ll;“melw View
Grateowon H Wagram EIQNMS ik
- : s Substss Pped SN pos
: : Mk CAUeE (D) memes v e
ity Ve

S

(g
er
trpendort
Comeinle barny,
y 3 w
Lacgensthéesechl Tulln
e
Komigatetten
_ Mchohausen
Wifersdort
o
ic
Egels
| M ot .
Source Event

close sULKERyS state_chonge { "new_state™: *select_role”, "old_state”: "free_driving” |

auso EOQIYMS { “new_state”: *select_role”, “old_state”: "free_driving” |

close EQIQIYMS | "new_sts y

close SULKERy4 I

uoes EWQIYM5 £

ciome SULKERy4 1™ e, “old_state”: *search_platoon_del

clowe FUIGIYMS { “new_state™: *search_platoon_delay”, “old_state”: “shortest_pach” |

Figure 16: 2" truck arrives for rendezvous

Figure 16 shows the second truck catching up for rendezvous.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 22 of 32
Version | 1.2 -2019/09/30

127,00.1 -

-

*OATS Monitoring and Control Tool

Start Mission
e
Abort Mission
Thell
%
Traismauer
Source
. sULKERy4
dosa EQUOIYMS
cooe SULKERy4
cicae EUQIVYMS
diose EWQfYMS
dose sULKERy4
clome FUQIYMS

Figure 17 shows

[Start] [Herzoge | [St.Poelten | [Awzen | [Sieghar|

Bs.-:u Deswiect M

SULKERYE
s R peed L) s
= Ey Tofow_lead JONED 15 56 emor eerot
: Raederrtbach ONLIE
o Telemetry View
Feiz am E30Qrms
Wagram Hivsier st smams ogoed meskn s
e e, ceving JORED msaee e o
) ONLINE
Telemetry Vier:
Stette ot
Gratermorth o
Wogram

Hausieitan

Erpersdant

Gemeiniebaen

Tulln

Langenschanten|

Event

stae_change

" *follow_lead”, “ol_state":

free diiv “old_stas

Figure 17: Both trucks meet at rendezvous point

that both trucks have arrived at rendezvous point and start driving in platoon configuration.

1- Chromium

Ghrshach
|
T
Watrerbach
Preaersdort
Mackersdor!
andet
Pleiach
Seurce
dose sULKERy4
dowe EDIQIYMS
close SULKERy4
dose EOIQIVMS
dose EMQIYMS
tose SULKERYS
cloze. EDIQIYMS

Deliverable nr.
Deliverable Title
Version

~*Monitoring and Control Tool

[Herzoge | | St.Poelten | | Atzen| [Sieghar |
Sewc A Oucemct A8

regenaor

Traiémauer

d_stare’": “walt_res]

SULKERYS
slas PE T e pos
Grrminbebionn ‘ Tobow_leml JONED 55565558 o
on
Telemedry View
Oberwilbiing BTG T SORIS Qg rEs0n pos
A [JONED 55550236 e anor
onLnE
~ Telemesry View
Epelsre
Kartsityer
(0
ppadas
s roneD) foxtiaeh
. Eaagnms) N
Lanzendart
| 14 o canbaon A wrgery €
Event Details
(follow_lead”, "old_state”: "select_role" |
(" “free_driving”, "old_state": "select_mle")
ange [“new " "select_role”, "old_state”™: "free_driving”™)
sute_change ["new select_role”, "old_state™ "lree_driving”)
[“new free_driving”, “old_state’’; "wail_respopse”
[
(

“new_sate": “wall_response”, *old_state™: “search_|

Figure 18: Trucks arrive at “split point”

D7.5
Initial Monitoring and command framework
1.2-2019/09/30

Page 23 of 32

g
e ﬂ."'!:;‘_";;-'t.‘\.

war

Figure 18 shows that the two trucks have reached the point where they need to depart and stop platooning
configuration.

127,0.0.1 - Chromium

7] C @ 12rem1 =
T .,.:_“. . i
o Oror,r&-.'-*Momtonng and Control Tool [Herzoge | [StPoelten] [Atzen| [Sieghar]
o SelectAll Deselect A1
Tralsmauer
Start Mission SULKERYS .
e e’ s e s
Comeiconn mL e w356 e -
ONLINE
Am m Telemetry View
E82QIYMS i
Obereiitling cans LS ipeed MSSon e
e e =
i ONLINE
SRR Telemetry View
.
i
Unterr adioery.
0 Geta
o St. Palt Totrerbach
[Engrivs) N
Source Event Details
cose sULKERy4 state_change

‘new_state™: “idle”, "old_state™ "follow_lead” |

|
doso EUQIYMS | “new_siate”;
tlose sULKERy4 (N
close EQQIYMS I
doss SULKERy4 {
cionn EQIQIYMS 1
dose EUIQIYMS [“new : *free_driving”, “old_state™: “wait_response” |

Figure 19: trucks reach their destination

Figure 19 shows that both trucks have reached their final destination points.

The Monitoring and Command Tool has a configuration file (See Figure 20). This is the only file the Monitoring
and Command Tool needs. The file contains configuration for agent icons (default and selected, which
telemetry to show, home icon). The configuration file also includes the buttons (both global events and custom
events) to be generated (as well as their parameters.

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 24 of 32
Version | 1.2 -2019/09/30

[=] configuration.js E3

=1 @ o R

10
11
12
13
14
15
16

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
e
34
23
36

38
39
40
41
42
43
44
45
46
47
48
49
20
il
Tk
SE)

£

Deliverable nr.
Deliverable Title
Version

I

guiEventButtons = {
customEvents : [
{
buttonText: "Launch",
eventName: "launch",
parameters: {},
styleClass: "event button"
1,

{
buttonText: "Zbort",

eventMName : abort™,
parameters: {},
styleClass: "event_button"

} r

{
buttonText: "Eeturn to Home",
eventName: "rth"™,
parameters: {},

styleClass: "event button"
1
1.
glokalEvents : [
{
buttonText: "Start Mission",
eventName: "startMission"™,
parameters: {},
styleClass: "start_button"
}F
{
buttonText: "Zbort Mission",
eventName: "abortMission",
parameters: {},
styleClass: "abort button"
1
1
1

agentTypes = {
default:{
quickdata: {},
defaultIcon : "drone.png",
selectedIcon : "drone_ selected.png”
}J’
drone: {
guickdata: {
autopilot : "autopilotState/mode",
battery: "battery3tate/percentage",

mission: "",

current: "incoming messages”,
pos: "position/latitudes"
} r

defaultIcon : "drone.png",
selectedIcon : "drone_ selected.png”,

| EE P | | Sy ———

Figure 20: Sample from the Monitoring and Command Tool’s Configuration File

D7.5
Initial Monitoring and command framework
1.2 -2019/09/30

11

Page 25 of 32

6.5 Implementation

The following table shows the status of the implementation of the requirements listed earlier.

Requirement Use case Status Comments
Automotive
Visualize the | i fth lat,! Impl
isualize the location of the agents (lat,Ing) Search&Rescue mplemented
A list of all agents along with important runtime data | Automotive
. Implemented
(topics), selected by the user Search&Rescue
L . Automotive
Record and visualize all events sent in the swarm Implemented
Search&Rescue
Visualization of the route for each swarm member possible .
. . Automotive
(not part of the current implementation, but could be Implemented
. Search&Rescue
added easily)
Automotive
Selection of individual agents Search&Rescue | Implemented
Logistics
Ability to manually trigger events in the swarm, either to | Automotive
Implemented
selected agents or the whole swarm Search&Rescue
Automotive
Hotkeys for events such as: Start, Stop Search&Rescue |Implemented
Logistics
Setting global parameters to the swarm Automotive Implemented
99 P Search&Rescue P

The cart that is assigned to each robot

(not used by
Logistics use
case)

ready for Use by the
application engineer

The path that each robot has to follow

ready for Use by the
application engineer

-~

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 731946.

.~ ‘;s"; __‘{:“t
UJAImm
(not used by
The location which the requested card must be sent to Logistics use read}/ fgr Use FJy the
application engineer
case)
(not used by
The number of available robots Logistics use read}/ fgr Use FJy the
application engineer
case)
. - (not. .used by ready for Use by the
The assigned missions to each robot Logistics use Do .
application engineer
case)
(not used by
The list of the missions and their status. Logistics use ready fgr Use by the
case) application engineer

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework
Version | 1.2-2019/09/30

Page 27 of 32

7 Use case specific configuration of the Monitoring and Command Tool

The following passage provides user information about how to configure and use the Monitoring and
Command Tool.

7.1 The Monitoring and Command Tool Installation

The monitoring tool consists of two main parts. The font-end GUI which is a dynamically generated html page,
and the bridge to the swarmio library. The bridge (monitoring-tool-service) is responsible for getting the
information from the swarmio library to the front end.

The source code for these two parts can be found in GitLab under the following links (recommended to install

the monitoring tool and then the bridge), the repos contain a markdown file with details on installation:
https://qgit.repository-pert.polito.it/pkarachatzis/monitoring-tool

https://qit.repository-pert.polito.it/pkarachatzis/monitoring-tool-service

7.2 The Monitoring and Command Tool Configuration

Any agents discovered by the communication library will be appended to the list, and their telemetry data will
be displayed, additionally if the agents publish location data (location/longitude, location/latitude) a marker

will be added on the mai.
@ 127.001 x

€ 2> C O 127001 = @ i

Y . .
DS "='~\Mon|tor|ng and Control Tool

Start Mission

United

Abort Mission & Kingdom e
*Manche:

Telemetry View
+ substatus: GOTO_MEETING_POINT

ster

A 0 - « admin_prio: 14372645
Wales - England v?d E . [- iocombg messages: 39570
‘Nederla = « destination:
- st 8 e o longitude: -3.7037902
oncen Belgique! Deu o ¥ 3 ~ g S 04167754

> ‘*'xggméi § =
embourg 482086348 48 209148 48 2096569,48.2105 48 2101391 48 21227469999999 4!
ll‘r’m.l&mm.l@nml‘lﬁ.m,l§,37‘l7u.lbm‘16.!

France o 3 B oy 38 + longude 1805414

‘ status
select role GOTO_MEETING_POINT
ONLINE

Telemetry View

o
Leatlet | Moy

aK1FOHIR state_change : "select_role", "old_state": "free_driving" }

| close | QUihKbJr state_change state”: "free_driving" }

| close | QIihKbJr state_change { "new_state": "free_driving", "old_state": "wait_response” }

| clase | Q1ihKbJr state_change { "new_state": "wait_response”, "old_state": "search_platoon_delay" }
| close | aK1FOHR state_change { "new_state": "free_driving", "old_state": "wait_response” }

| close | aK1FOHIR state_change { "new_state": "wait_response", "old_state": "search_platoon_delay" }
| close | aK1FOHIR state_change { "new_state": “search_platoon_delay", "old_state": "shortest_path" }

agentTypes = {

truck: { <== Display Type will be selected based on the type advertized by the
swarmio lib

quickdata: { <== Attributes added here will be displayed as seen in the image

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 731946.

https://git.repository-pert.polito.it/pkarachatzis/monitoring-tool
https://git.repository-pert.polito.it/pkarachatzis/monitoring-tool-service

Y
P ‘."r'}:‘n‘?'t‘%o‘_

ouJarm

above

status : "status", <== The format is <displayedName> :
"libswarmioTelemetryName"

substatus : "substatus", <== The format is <displayedName> :
"libswarmioTelemetryName"

speed : "location/speed", <== The format is <displayedName> :
"libswarmioTelemetryName"

mission: "", <== The format is <displayedName> : "libswarmioTelemetryName"

pos: "position/latitude" <== The format is <displayedName> :
"libswarmioTelemetryName"

}s

defaultIcon : "truck.png", <== non seleted icon displayed (required swarmio
topics: position/longtitude, position/latitude)

selectedIcon : "truck_selected.png", <== selected icon displayed (required
swarmio topics: position/longtitude, position/latitude)

homeIcon: "location_pin.png" <== icon to display for docking station (required
swamio topics: destination/longtitude, destination/latitude)

}

In the image above we can also see two groups of buttons, the button to the left are global event button that
will be sent to the entire swarm, white buttons to the right will be sent only the selected agents. These buttons
can be customized in the following sections in the configuration file globalEvents and customEvents the
definition format is similar for both of them

{

buttonText: "Start", <== Text to be displayed
eventName: "completed", <== Event name to send
parameters: {}, <== parameters of the event

styleClass: "event_button" <== adds the following class to the button (the class
be defined using css to customize the button)

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 29 of 32
Version | 1.2 -2019/09/30

. - M

= E S
; oy w -
- \s-_,_t“l.....

uJorrm

The parameters are specified in the following way: parameters: { "<parameterNamel>"
["<parameterValue1>", <parameterTypel>], "<parameterName2>" : ["<parameterValue2>",
<parameterType2>] }. Parameter type is an integer showing the type of the parameter. The id for each type
can be found at the beginning of the configuration file.

Ex. parameters: {"destination" : ["Vienna", 51},

At the bottom is the GUI we can see global event sent via the library. Events here can be filtered by adding the
name of the event in the configuration file in the ignoredEvent list.

Ex ignoredEvents = ["position"];

Also events can be drawn on the map if they are specified in the drawableEvent section, using the following

format:

target_found : {
duration: 6000, <== duration before the event is removed
lat: pose/latitude, <== 1latitude to draw the event at
1ng: pose/longtitude", <== longtitude to draw the event at
icon: "test.png", <== icon to use for the event

icon size: [40, 40], <== size of the icon

focusEvent: true <== adjust the viewport to view the event

7.3 The Monitoring and Command Tool Running

The Graphical User Interface (GUI) can be accessed via a browser at the following address (127.0.0.1). The
monitoring tool also comes with a configuration file (called ‘configuration.js' under the html pages) which can
be adjusted to the needs (we will go through it step by step). You will be greeted with the following screen
(see Figure 21):

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 30 of 32
Version | 1.2 -2019/09/30

Mozilla Firefox

File Edit View History Bookmarks Tools Help

£ c @ 127.0.0.1 . @ neoe =

X CL'J"'F&&{:‘MO”“OH“Q and Control Tool Herzoge] [St.Poelten Sieghar

Droento

5 Venaria Realel ™) g 5 SelectAll Deselect All
m m \ 4 [N

Pianezza

%/ Alpignano
erars

Collegno i TR A\

Rivoli <™

Grugliasco fzamal pup; e Torino

gotircs. e Details
Figure 21: The Monitoring and Command Tool Screen when starting to run the tool
8 Next steps

The next steps planned are the integration of the Monitoring & Command Tool into the Logistics Scenario
upon decision of Robotnik to make use of it.

9 Conclusion

This deliverable has presented the work done in Task 7.3 to design, develop and implement the first version of
the CPSwarm Monitoring and Command Tool. As this task will continue till M34, the tool will be further enriched
by implanting the requirements of the three scenarios. The final status and implementation will be documented
in later deliverable D7.6, Final Monitoring and Command framework.

The Monitoring and Command Tool developed within the frame of the CPSwarm project is a first start into an
area of applications that will need the following implementations / Technologies available:
1) Vehicles that are capable of autonomous driving
2) A wireless data communication link that can route safety critical control data satisfying safety
requirements for control data (deterministic wireless link using WLAN as an example for TTEthernet
developed within this project). However, the technology developed for wireless communication can
now be used on different technologies such as e.g. V2X as well.
3) A reliable tool approach to configure, agree, start, conduct and stop the mission of platooning (the
Monitoring and Command Tool).

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 31 of 32
Version | 1.2 -2019/09/30

10 Acronyms

The related reference documents to D7.5 are summarized in §2.2

Acronyms
Acronym Explanation
API Application Program Interface
CPS Cyber Physical System
HTTP Hypertext Transfer Protocol
MQTT Message Queuing Telemetry Transport
REST Representational state transfer
ROS Robot Operating System
SoS System of Systems
TTEthernet Time-Triggered Ethernet (SAE AS6802 Standard)
WLAN Wireless Local Area Network

11 List of figures

Figure 1: Architecture Design 7
Figure 2: Monitoring Tool phase sequence diagram 8
Figure 3: The architecture of the Communication Library 9
Figure 4: Monitoring & Command Tool structure 11
Figure 5: State Machine approach 14
Figure 6: Platooning planning 15
Figure 7: Configuration Panel 16
Figure 8: Basic Monitoring and Command Tool user interface 17
Figure 9: Configuration Panel: in the entire screen view (figure above) and the panel zoomed for better readability 18
Figure 10: Telemetry data displayed 19
Figure 11: Platooning preparation phase (second truck seeking platooning) 19
Figure 12: Platooning preparation phase (first truck ready to agree in platooning lead) 20
Figure 13: Start the “"platooning mission” 20
Figure 14: preparing for the "rendezvous” 21
Figure 15: Rendezvous 21
Figure 16: 2" truck arrives for rendezvous 22
Figure 17: Both trucks meet at rendezvous point 23
Figure 18: Trucks arrive at “split point” 23
Figure 19: trucks reach their destination 24
Figure 20: Sample from the Monitoring and Command Tool's Configuration File 25
Figure 21: The Monitoring and Command Tool Screen when starting to run the tool 31

Deliverable nr. | D7.5
Deliverable Title | Initial Monitoring and command framework Page 32 of 32
Version | 1.2 -2019/09/30

file:///C:/Users/GianlucaPrato/Downloads/D7.5%20-%20Initial%20Monitoring%20and%20Configuration%20framework_FINAL.docx%23_Toc28605446

